| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258 | <?php/** *	@package JAMA * *	For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n *	unit lower triangular matrix L, an n-by-n upper triangular matrix U, *	and a permutation vector piv of length m so that A(piv,:) = L*U. *	If m < n, then L is m-by-m and U is m-by-n. * *	The LU decompostion with pivoting always exists, even if the matrix is *	singular, so the constructor will never fail. The primary use of the *	LU decomposition is in the solution of square systems of simultaneous *	linear equations. This will fail if isNonsingular() returns false. * *	@author Paul Meagher *	@author Bartosz Matosiuk *	@author Michael Bommarito *	@version 1.1 *	@license PHP v3.0 */class PHPExcel_Shared_JAMA_LUDecomposition {	const MatrixSingularException	= "Can only perform operation on singular matrix.";	const MatrixSquareException		= "Mismatched Row dimension";	/**	 *	Decomposition storage	 *	@var array	 */	private $LU = array();	/**	 *	Row dimension.	 *	@var int	 */	private $m;	/**	 *	Column dimension.	 *	@var int	 */	private $n;	/**	 *	Pivot sign.	 *	@var int	 */	private $pivsign;	/**	 *	Internal storage of pivot vector.	 *	@var array	 */	private $piv = array();	/**	 *	LU Decomposition constructor.	 *	 *	@param $A Rectangular matrix	 *	@return Structure to access L, U and piv.	 */	public function __construct($A) {		if ($A instanceof PHPExcel_Shared_JAMA_Matrix) {			// Use a "left-looking", dot-product, Crout/Doolittle algorithm.			$this->LU = $A->getArray();			$this->m  = $A->getRowDimension();			$this->n  = $A->getColumnDimension();			for ($i = 0; $i < $this->m; ++$i) {				$this->piv[$i] = $i;			}			$this->pivsign = 1;			$LUrowi = $LUcolj = array();			// Outer loop.			for ($j = 0; $j < $this->n; ++$j) {				// Make a copy of the j-th column to localize references.				for ($i = 0; $i < $this->m; ++$i) {					$LUcolj[$i] = &$this->LU[$i][$j];				}				// Apply previous transformations.				for ($i = 0; $i < $this->m; ++$i) {					$LUrowi = $this->LU[$i];					// Most of the time is spent in the following dot product.					$kmax = min($i,$j);					$s = 0.0;					for ($k = 0; $k < $kmax; ++$k) {						$s += $LUrowi[$k] * $LUcolj[$k];					}					$LUrowi[$j] = $LUcolj[$i] -= $s;				}				// Find pivot and exchange if necessary.				$p = $j;				for ($i = $j+1; $i < $this->m; ++$i) {					if (abs($LUcolj[$i]) > abs($LUcolj[$p])) {						$p = $i;					}				}				if ($p != $j) {					for ($k = 0; $k < $this->n; ++$k) {						$t = $this->LU[$p][$k];						$this->LU[$p][$k] = $this->LU[$j][$k];						$this->LU[$j][$k] = $t;					}					$k = $this->piv[$p];					$this->piv[$p] = $this->piv[$j];					$this->piv[$j] = $k;					$this->pivsign = $this->pivsign * -1;				}				// Compute multipliers.				if (($j < $this->m) && ($this->LU[$j][$j] != 0.0)) {					for ($i = $j+1; $i < $this->m; ++$i) {						$this->LU[$i][$j] /= $this->LU[$j][$j];					}				}			}		} else {			throw new Exception(PHPExcel_Shared_JAMA_Matrix::ArgumentTypeException);		}	}	//	function __construct()	/**	 *	Get lower triangular factor.	 *	 *	@return array Lower triangular factor	 */	public function getL() {		for ($i = 0; $i < $this->m; ++$i) {			for ($j = 0; $j < $this->n; ++$j) {				if ($i > $j) {					$L[$i][$j] = $this->LU[$i][$j];				} elseif ($i == $j) {					$L[$i][$j] = 1.0;				} else {					$L[$i][$j] = 0.0;				}			}		}		return new PHPExcel_Shared_JAMA_Matrix($L);	}	//	function getL()	/**	 *	Get upper triangular factor.	 *	 *	@return array Upper triangular factor	 */	public function getU() {		for ($i = 0; $i < $this->n; ++$i) {			for ($j = 0; $j < $this->n; ++$j) {				if ($i <= $j) {					$U[$i][$j] = $this->LU[$i][$j];				} else {					$U[$i][$j] = 0.0;				}			}		}		return new PHPExcel_Shared_JAMA_Matrix($U);	}	//	function getU()	/**	 *	Return pivot permutation vector.	 *	 *	@return array Pivot vector	 */	public function getPivot() {		return $this->piv;	}	//	function getPivot()	/**	 *	Alias for getPivot	 *	 *	@see getPivot	 */	public function getDoublePivot() {		return $this->getPivot();	}	//	function getDoublePivot()	/**	 *	Is the matrix nonsingular?	 *	 *	@return true if U, and hence A, is nonsingular.	 */	public function isNonsingular() {		for ($j = 0; $j < $this->n; ++$j) {			if ($this->LU[$j][$j] == 0) {				return false;			}		}		return true;	}	//	function isNonsingular()	/**	 *	Count determinants	 *	 *	@return array d matrix deterninat	 */	public function det() {		if ($this->m == $this->n) {			$d = $this->pivsign;			for ($j = 0; $j < $this->n; ++$j) {				$d *= $this->LU[$j][$j];			}			return $d;		} else {			throw new Exception(PHPExcel_Shared_JAMA_Matrix::MatrixDimensionException);		}	}	//	function det()	/**	 *	Solve A*X = B	 *	 *	@param  $B  A Matrix with as many rows as A and any number of columns.	 *	@return  X so that L*U*X = B(piv,:)	 *	@exception  IllegalArgumentException Matrix row dimensions must agree.	 *	@exception  RuntimeException  Matrix is singular.	 */	public function solve($B) {		if ($B->getRowDimension() == $this->m) {			if ($this->isNonsingular()) {				// Copy right hand side with pivoting				$nx = $B->getColumnDimension();				$X  = $B->getMatrix($this->piv, 0, $nx-1);				// Solve L*Y = B(piv,:)				for ($k = 0; $k < $this->n; ++$k) {					for ($i = $k+1; $i < $this->n; ++$i) {						for ($j = 0; $j < $nx; ++$j) {							$X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];						}					}				}				// Solve U*X = Y;				for ($k = $this->n-1; $k >= 0; --$k) {					for ($j = 0; $j < $nx; ++$j) {						$X->A[$k][$j] /= $this->LU[$k][$k];					}					for ($i = 0; $i < $k; ++$i) {						for ($j = 0; $j < $nx; ++$j) {							$X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];						}					}				}				return $X;			} else {				throw new Exception(self::MatrixSingularException);			}		} else {			throw new Exception(self::MatrixSquareException);		}	}	//	function solve()}	//	class PHPExcel_Shared_JAMA_LUDecomposition
 |