| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526 | <?php/** *	@package JAMA * *	For an m-by-n matrix A with m >= n, the singular value decomposition is *	an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and *	an n-by-n orthogonal matrix V so that A = U*S*V'. * *	The singular values, sigma[$k] = S[$k][$k], are ordered so that *	sigma[0] >= sigma[1] >= ... >= sigma[n-1]. * *	The singular value decompostion always exists, so the constructor will *	never fail.  The matrix condition number and the effective numerical *	rank can be computed from this decomposition. * *	@author  Paul Meagher *	@license PHP v3.0 *	@version 1.1 */class SingularValueDecomposition  {	/**	 *	Internal storage of U.	 *	@var array	 */	private $U = array();	/**	 *	Internal storage of V.	 *	@var array	 */	private $V = array();	/**	 *	Internal storage of singular values.	 *	@var array	 */	private $s = array();	/**	 *	Row dimension.	 *	@var int	 */	private $m;	/**	 *	Column dimension.	 *	@var int	 */	private $n;	/**	 *	Construct the singular value decomposition	 *	 *	Derived from LINPACK code.	 *	 *	@param $A Rectangular matrix	 *	@return Structure to access U, S and V.	 */	public function __construct($Arg) {		// Initialize.		$A = $Arg->getArrayCopy();		$this->m = $Arg->getRowDimension();		$this->n = $Arg->getColumnDimension();		$nu      = min($this->m, $this->n);		$e       = array();		$work    = array();		$wantu   = true;		$wantv   = true;		$nct = min($this->m - 1, $this->n);		$nrt = max(0, min($this->n - 2, $this->m));		// Reduce A to bidiagonal form, storing the diagonal elements		// in s and the super-diagonal elements in e.		for ($k = 0; $k < max($nct,$nrt); ++$k) {			if ($k < $nct) {				// Compute the transformation for the k-th column and				// place the k-th diagonal in s[$k].				// Compute 2-norm of k-th column without under/overflow.				$this->s[$k] = 0;				for ($i = $k; $i < $this->m; ++$i) {					$this->s[$k] = hypo($this->s[$k], $A[$i][$k]);				}				if ($this->s[$k] != 0.0) {					if ($A[$k][$k] < 0.0) {						$this->s[$k] = -$this->s[$k];					}					for ($i = $k; $i < $this->m; ++$i) {						$A[$i][$k] /= $this->s[$k];					}					$A[$k][$k] += 1.0;				}				$this->s[$k] = -$this->s[$k];			}			for ($j = $k + 1; $j < $this->n; ++$j) {				if (($k < $nct) & ($this->s[$k] != 0.0)) {					// Apply the transformation.					$t = 0;					for ($i = $k; $i < $this->m; ++$i) {						$t += $A[$i][$k] * $A[$i][$j];					}					$t = -$t / $A[$k][$k];					for ($i = $k; $i < $this->m; ++$i) {						$A[$i][$j] += $t * $A[$i][$k];					}					// Place the k-th row of A into e for the					// subsequent calculation of the row transformation.					$e[$j] = $A[$k][$j];				}			}			if ($wantu AND ($k < $nct)) {				// Place the transformation in U for subsequent back				// multiplication.				for ($i = $k; $i < $this->m; ++$i) {					$this->U[$i][$k] = $A[$i][$k];				}			}			if ($k < $nrt) {				// Compute the k-th row transformation and place the				// k-th super-diagonal in e[$k].				// Compute 2-norm without under/overflow.				$e[$k] = 0;				for ($i = $k + 1; $i < $this->n; ++$i) {					$e[$k] = hypo($e[$k], $e[$i]);				}				if ($e[$k] != 0.0) {					if ($e[$k+1] < 0.0) {						$e[$k] = -$e[$k];					}					for ($i = $k + 1; $i < $this->n; ++$i) {						$e[$i] /= $e[$k];					}					$e[$k+1] += 1.0;				}				$e[$k] = -$e[$k];				if (($k+1 < $this->m) AND ($e[$k] != 0.0)) {					// Apply the transformation.					for ($i = $k+1; $i < $this->m; ++$i) {						$work[$i] = 0.0;					}					for ($j = $k+1; $j < $this->n; ++$j) {						for ($i = $k+1; $i < $this->m; ++$i) {							$work[$i] += $e[$j] * $A[$i][$j];						}					}					for ($j = $k + 1; $j < $this->n; ++$j) {						$t = -$e[$j] / $e[$k+1];						for ($i = $k + 1; $i < $this->m; ++$i) {							$A[$i][$j] += $t * $work[$i];						}					}				}				if ($wantv) {					// Place the transformation in V for subsequent					// back multiplication.					for ($i = $k + 1; $i < $this->n; ++$i) {						$this->V[$i][$k] = $e[$i];					}				}			}		}		// Set up the final bidiagonal matrix or order p.		$p = min($this->n, $this->m + 1);		if ($nct < $this->n) {			$this->s[$nct] = $A[$nct][$nct];		}		if ($this->m < $p) {			$this->s[$p-1] = 0.0;		}		if ($nrt + 1 < $p) {			$e[$nrt] = $A[$nrt][$p-1];		}		$e[$p-1] = 0.0;		// If required, generate U.		if ($wantu) {			for ($j = $nct; $j < $nu; ++$j) {				for ($i = 0; $i < $this->m; ++$i) {					$this->U[$i][$j] = 0.0;				}				$this->U[$j][$j] = 1.0;			}			for ($k = $nct - 1; $k >= 0; --$k) {				if ($this->s[$k] != 0.0) {					for ($j = $k + 1; $j < $nu; ++$j) {						$t = 0;						for ($i = $k; $i < $this->m; ++$i) {							$t += $this->U[$i][$k] * $this->U[$i][$j];						}						$t = -$t / $this->U[$k][$k];						for ($i = $k; $i < $this->m; ++$i) {							$this->U[$i][$j] += $t * $this->U[$i][$k];						}					}					for ($i = $k; $i < $this->m; ++$i ) {						$this->U[$i][$k] = -$this->U[$i][$k];					}					$this->U[$k][$k] = 1.0 + $this->U[$k][$k];					for ($i = 0; $i < $k - 1; ++$i) {						$this->U[$i][$k] = 0.0;					}				} else {					for ($i = 0; $i < $this->m; ++$i) {						$this->U[$i][$k] = 0.0;					}					$this->U[$k][$k] = 1.0;				}			}		}		// If required, generate V.		if ($wantv) {			for ($k = $this->n - 1; $k >= 0; --$k) {				if (($k < $nrt) AND ($e[$k] != 0.0)) {					for ($j = $k + 1; $j < $nu; ++$j) {						$t = 0;						for ($i = $k + 1; $i < $this->n; ++$i) {							$t += $this->V[$i][$k]* $this->V[$i][$j];						}						$t = -$t / $this->V[$k+1][$k];						for ($i = $k + 1; $i < $this->n; ++$i) {							$this->V[$i][$j] += $t * $this->V[$i][$k];						}					}				}				for ($i = 0; $i < $this->n; ++$i) {					$this->V[$i][$k] = 0.0;				}				$this->V[$k][$k] = 1.0;			}		}		// Main iteration loop for the singular values.		$pp   = $p - 1;		$iter = 0;		$eps  = pow(2.0, -52.0);		while ($p > 0) {			// Here is where a test for too many iterations would go.			// This section of the program inspects for negligible			// elements in the s and e arrays.  On completion the			// variables kase and k are set as follows:			// kase = 1  if s(p) and e[k-1] are negligible and k<p			// kase = 2  if s(k) is negligible and k<p			// kase = 3  if e[k-1] is negligible, k<p, and			//           s(k), ..., s(p) are not negligible (qr step).			// kase = 4  if e(p-1) is negligible (convergence).			for ($k = $p - 2; $k >= -1; --$k) {				if ($k == -1) {					break;				}				if (abs($e[$k]) <= $eps * (abs($this->s[$k]) + abs($this->s[$k+1]))) {					$e[$k] = 0.0;					break;				}			}			if ($k == $p - 2) {				$kase = 4;			} else {				for ($ks = $p - 1; $ks >= $k; --$ks) {					if ($ks == $k) {						break;					}					$t = ($ks != $p ? abs($e[$ks]) : 0.) + ($ks != $k + 1 ? abs($e[$ks-1]) : 0.);					if (abs($this->s[$ks]) <= $eps * $t)  {						$this->s[$ks] = 0.0;						break;					}				}				if ($ks == $k) {					$kase = 3;				} else if ($ks == $p-1) {					$kase = 1;				} else {					$kase = 2;					$k = $ks;				}			}			++$k;			// Perform the task indicated by kase.			switch ($kase) {				// Deflate negligible s(p).				case 1:						$f = $e[$p-2];						$e[$p-2] = 0.0;						for ($j = $p - 2; $j >= $k; --$j) {							$t  = hypo($this->s[$j],$f);							$cs = $this->s[$j] / $t;							$sn = $f / $t;							$this->s[$j] = $t;							if ($j != $k) {								$f = -$sn * $e[$j-1];								$e[$j-1] = $cs * $e[$j-1];							}							if ($wantv) {								for ($i = 0; $i < $this->n; ++$i) {									$t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$p-1];									$this->V[$i][$p-1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$p-1];									$this->V[$i][$j] = $t;								}							}						}						break;				// Split at negligible s(k).				case 2:						$f = $e[$k-1];						$e[$k-1] = 0.0;						for ($j = $k; $j < $p; ++$j) {							$t = hypo($this->s[$j], $f);							$cs = $this->s[$j] / $t;							$sn = $f / $t;							$this->s[$j] = $t;							$f = -$sn * $e[$j];							$e[$j] = $cs * $e[$j];							if ($wantu) {								for ($i = 0; $i < $this->m; ++$i) {									$t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$k-1];									$this->U[$i][$k-1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$k-1];									$this->U[$i][$j] = $t;								}							}						}						break;				// Perform one qr step.				case 3:						// Calculate the shift.						$scale = max(max(max(max(									abs($this->s[$p-1]),abs($this->s[$p-2])),abs($e[$p-2])),									abs($this->s[$k])), abs($e[$k]));						$sp   = $this->s[$p-1] / $scale;						$spm1 = $this->s[$p-2] / $scale;						$epm1 = $e[$p-2] / $scale;						$sk   = $this->s[$k] / $scale;						$ek   = $e[$k] / $scale;						$b    = (($spm1 + $sp) * ($spm1 - $sp) + $epm1 * $epm1) / 2.0;						$c    = ($sp * $epm1) * ($sp * $epm1);						$shift = 0.0;						if (($b != 0.0) || ($c != 0.0)) {							$shift = sqrt($b * $b + $c);							if ($b < 0.0) {								$shift = -$shift;							}							$shift = $c / ($b + $shift);						}						$f = ($sk + $sp) * ($sk - $sp) + $shift;						$g = $sk * $ek;						// Chase zeros.						for ($j = $k; $j < $p-1; ++$j) {							$t  = hypo($f,$g);							$cs = $f/$t;							$sn = $g/$t;							if ($j != $k) {								$e[$j-1] = $t;							}							$f = $cs * $this->s[$j] + $sn * $e[$j];							$e[$j] = $cs * $e[$j] - $sn * $this->s[$j];							$g = $sn * $this->s[$j+1];							$this->s[$j+1] = $cs * $this->s[$j+1];							if ($wantv) {								for ($i = 0; $i < $this->n; ++$i) {									$t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$j+1];									$this->V[$i][$j+1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$j+1];									$this->V[$i][$j] = $t;								}							}							$t = hypo($f,$g);							$cs = $f/$t;							$sn = $g/$t;							$this->s[$j] = $t;							$f = $cs * $e[$j] + $sn * $this->s[$j+1];							$this->s[$j+1] = -$sn * $e[$j] + $cs * $this->s[$j+1];							$g = $sn * $e[$j+1];							$e[$j+1] = $cs * $e[$j+1];							if ($wantu && ($j < $this->m - 1)) {								for ($i = 0; $i < $this->m; ++$i) {									$t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$j+1];									$this->U[$i][$j+1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$j+1];									$this->U[$i][$j] = $t;								}							}						}						$e[$p-2] = $f;						$iter = $iter + 1;						break;				// Convergence.				case 4:						// Make the singular values positive.						if ($this->s[$k] <= 0.0) {							$this->s[$k] = ($this->s[$k] < 0.0 ? -$this->s[$k] : 0.0);							if ($wantv) {								for ($i = 0; $i <= $pp; ++$i) {									$this->V[$i][$k] = -$this->V[$i][$k];								}							}						}						// Order the singular values.						while ($k < $pp) {							if ($this->s[$k] >= $this->s[$k+1]) {								break;							}							$t = $this->s[$k];							$this->s[$k] = $this->s[$k+1];							$this->s[$k+1] = $t;							if ($wantv AND ($k < $this->n - 1)) {								for ($i = 0; $i < $this->n; ++$i) {									$t = $this->V[$i][$k+1];									$this->V[$i][$k+1] = $this->V[$i][$k];									$this->V[$i][$k] = $t;								}							}							if ($wantu AND ($k < $this->m-1)) {								for ($i = 0; $i < $this->m; ++$i) {									$t = $this->U[$i][$k+1];									$this->U[$i][$k+1] = $this->U[$i][$k];									$this->U[$i][$k] = $t;								}							}							++$k;						}						$iter = 0;						--$p;						break;			} // end switch		} // end while	} // end constructor	/**	 *	Return the left singular vectors	 *	 *	@access public	 *	@return U	 */	public function getU() {		return new Matrix($this->U, $this->m, min($this->m + 1, $this->n));	}	/**	 *	Return the right singular vectors	 *	 *	@access public	 *	@return V	 */	public function getV() {		return new Matrix($this->V);	}	/**	 *	Return the one-dimensional array of singular values	 *	 *	@access public	 *	@return diagonal of S.	 */	public function getSingularValues() {		return $this->s;	}	/**	 *	Return the diagonal matrix of singular values	 *	 *	@access public	 *	@return S	 */	public function getS() {		for ($i = 0; $i < $this->n; ++$i) {			for ($j = 0; $j < $this->n; ++$j) {				$S[$i][$j] = 0.0;			}			$S[$i][$i] = $this->s[$i];		}		return new Matrix($S);	}	/**	 *	Two norm	 *	 *	@access public	 *	@return max(S)	 */	public function norm2() {		return $this->s[0];	}	/**	 *	Two norm condition number	 *	 *	@access public	 *	@return max(S)/min(S)	 */	public function cond() {		return $this->s[0] / $this->s[min($this->m, $this->n) - 1];	}	/**	 *	Effective numerical matrix rank	 *	 *	@access public	 *	@return Number of nonnegligible singular values.	 */	public function rank() {		$eps = pow(2.0, -52.0);		$tol = max($this->m, $this->n) * $this->s[0] * $eps;		$r = 0;		for ($i = 0; $i < count($this->s); ++$i) {			if ($this->s[$i] > $tol) {				++$r;			}		}		return $r;	}}	//	class SingularValueDecomposition
 |