123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- <?php
- // Levenberg-Marquardt in PHP
- // http://www.idiom.com/~zilla/Computer/Javanumeric/LM.java
- class LevenbergMarquardt {
- /**
- * Calculate the current sum-squared-error
- *
- * Chi-squared is the distribution of squared Gaussian errors,
- * thus the name.
- *
- * @param double[][] $x
- * @param double[] $a
- * @param double[] $y,
- * @param double[] $s,
- * @param object $f
- */
- function chiSquared($x, $a, $y, $s, $f) {
- $npts = count($y);
- $sum = 0.0;
- for ($i = 0; $i < $npts; ++$i) {
- $d = $y[$i] - $f->val($x[$i], $a);
- $d = $d / $s[$i];
- $sum = $sum + ($d*$d);
- }
- return $sum;
- } // function chiSquared()
- /**
- * Minimize E = sum {(y[k] - f(x[k],a)) / s[k]}^2
- * The individual errors are optionally scaled by s[k].
- * Note that LMfunc implements the value and gradient of f(x,a),
- * NOT the value and gradient of E with respect to a!
- *
- * @param x array of domain points, each may be multidimensional
- * @param y corresponding array of values
- * @param a the parameters/state of the model
- * @param vary false to indicate the corresponding a[k] is to be held fixed
- * @param s2 sigma^2 for point i
- * @param lambda blend between steepest descent (lambda high) and
- * jump to bottom of quadratic (lambda zero).
- * Start with 0.001.
- * @param termepsilon termination accuracy (0.01)
- * @param maxiter stop and return after this many iterations if not done
- * @param verbose set to zero (no prints), 1, 2
- *
- * @return the new lambda for future iterations.
- * Can use this and maxiter to interleave the LM descent with some other
- * task, setting maxiter to something small.
- */
- function solve($x, $a, $y, $s, $vary, $f, $lambda, $termepsilon, $maxiter, $verbose) {
- $npts = count($y);
- $nparm = count($a);
- if ($verbose > 0) {
- print("solve x[".count($x)."][".count($x[0])."]");
- print(" a[".count($a)."]");
- println(" y[".count(length)."]");
- }
- $e0 = $this->chiSquared($x, $a, $y, $s, $f);
- //double lambda = 0.001;
- $done = false;
- // g = gradient, H = hessian, d = step to minimum
- // H d = -g, solve for d
- $H = array();
- $g = array();
- //double[] d = new double[nparm];
- $oos2 = array();
- for($i = 0; $i < $npts; ++$i) {
- $oos2[$i] = 1./($s[$i]*$s[$i]);
- }
- $iter = 0;
- $term = 0; // termination count test
- do {
- ++$iter;
- // hessian approximation
- for( $r = 0; $r < $nparm; ++$r) {
- for( $c = 0; $c < $nparm; ++$c) {
- for( $i = 0; $i < $npts; ++$i) {
- if ($i == 0) $H[$r][$c] = 0.;
- $xi = $x[$i];
- $H[$r][$c] += ($oos2[$i] * $f->grad($xi, $a, $r) * $f->grad($xi, $a, $c));
- } //npts
- } //c
- } //r
- // boost diagonal towards gradient descent
- for( $r = 0; $r < $nparm; ++$r)
- $H[$r][$r] *= (1. + $lambda);
- // gradient
- for( $r = 0; $r < $nparm; ++$r) {
- for( $i = 0; $i < $npts; ++$i) {
- if ($i == 0) $g[$r] = 0.;
- $xi = $x[$i];
- $g[$r] += ($oos2[$i] * ($y[$i]-$f->val($xi,$a)) * $f->grad($xi, $a, $r));
- }
- } //npts
- // scale (for consistency with NR, not necessary)
- if ($false) {
- for( $r = 0; $r < $nparm; ++$r) {
- $g[$r] = -0.5 * $g[$r];
- for( $c = 0; $c < $nparm; ++$c) {
- $H[$r][$c] *= 0.5;
- }
- }
- }
- // solve H d = -g, evaluate error at new location
- //double[] d = DoubleMatrix.solve(H, g);
- // double[] d = (new Matrix(H)).lu().solve(new Matrix(g, nparm)).getRowPackedCopy();
- //double[] na = DoubleVector.add(a, d);
- // double[] na = (new Matrix(a, nparm)).plus(new Matrix(d, nparm)).getRowPackedCopy();
- // double e1 = chiSquared(x, na, y, s, f);
- // if (verbose > 0) {
- // System.out.println("\n\niteration "+iter+" lambda = "+lambda);
- // System.out.print("a = ");
- // (new Matrix(a, nparm)).print(10, 2);
- // if (verbose > 1) {
- // System.out.print("H = ");
- // (new Matrix(H)).print(10, 2);
- // System.out.print("g = ");
- // (new Matrix(g, nparm)).print(10, 2);
- // System.out.print("d = ");
- // (new Matrix(d, nparm)).print(10, 2);
- // }
- // System.out.print("e0 = " + e0 + ": ");
- // System.out.print("moved from ");
- // (new Matrix(a, nparm)).print(10, 2);
- // System.out.print("e1 = " + e1 + ": ");
- // if (e1 < e0) {
- // System.out.print("to ");
- // (new Matrix(na, nparm)).print(10, 2);
- // } else {
- // System.out.println("move rejected");
- // }
- // }
- // termination test (slightly different than NR)
- // if (Math.abs(e1-e0) > termepsilon) {
- // term = 0;
- // } else {
- // term++;
- // if (term == 4) {
- // System.out.println("terminating after " + iter + " iterations");
- // done = true;
- // }
- // }
- // if (iter >= maxiter) done = true;
- // in the C++ version, found that changing this to e1 >= e0
- // was not a good idea. See comment there.
- //
- // if (e1 > e0 || Double.isNaN(e1)) { // new location worse than before
- // lambda *= 10.;
- // } else { // new location better, accept new parameters
- // lambda *= 0.1;
- // e0 = e1;
- // // simply assigning a = na will not get results copied back to caller
- // for( int i = 0; i < nparm; i++ ) {
- // if (vary[i]) a[i] = na[i];
- // }
- // }
- } while(!$done);
- return $lambda;
- } // function solve()
- } // class LevenbergMarquardt
|