| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 | 
							- <?php
 
- // Levenberg-Marquardt in PHP
 
- // http://www.idiom.com/~zilla/Computer/Javanumeric/LM.java
 
- class LevenbergMarquardt {
 
- 	/**
 
- 	 * Calculate the current sum-squared-error
 
- 	 *
 
- 	 * Chi-squared is the distribution of squared Gaussian errors,
 
- 	 * thus the name.
 
- 	 *
 
- 	 * @param double[][] $x
 
- 	 * @param double[] $a
 
- 	 * @param double[] $y,
 
- 	 * @param double[] $s,
 
- 	 * @param object $f
 
- 	 */
 
- 	function chiSquared($x, $a, $y, $s, $f) {
 
- 		$npts = count($y);
 
- 		$sum = 0.0;
 
- 		for ($i = 0; $i < $npts; ++$i) {
 
- 			$d = $y[$i] - $f->val($x[$i], $a);
 
- 			$d = $d / $s[$i];
 
- 			$sum = $sum + ($d*$d);
 
- 		}
 
- 		return $sum;
 
- 	}	//	function chiSquared()
 
- 	/**
 
- 	 * Minimize E = sum {(y[k] - f(x[k],a)) / s[k]}^2
 
- 	 * The individual errors are optionally scaled by s[k].
 
- 	 * Note that LMfunc implements the value and gradient of f(x,a),
 
- 	 * NOT the value and gradient of E with respect to a!
 
- 	 *
 
- 	 * @param x array of domain points, each may be multidimensional
 
- 	 * @param y corresponding array of values
 
- 	 * @param a the parameters/state of the model
 
- 	 * @param vary false to indicate the corresponding a[k] is to be held fixed
 
- 	 * @param s2 sigma^2 for point i
 
- 	 * @param lambda blend between steepest descent (lambda high) and
 
- 	 *	jump to bottom of quadratic (lambda zero).
 
- 	 * 	Start with 0.001.
 
- 	 * @param termepsilon termination accuracy (0.01)
 
- 	 * @param maxiter	stop and return after this many iterations if not done
 
- 	 * @param verbose	set to zero (no prints), 1, 2
 
- 	 *
 
- 	 * @return the new lambda for future iterations.
 
- 	 *  Can use this and maxiter to interleave the LM descent with some other
 
- 	 *  task, setting maxiter to something small.
 
- 	 */
 
- 	function solve($x, $a, $y, $s, $vary, $f, $lambda, $termepsilon, $maxiter, $verbose) {
 
- 		$npts = count($y);
 
- 		$nparm = count($a);
 
- 		if ($verbose > 0) {
 
- 			print("solve x[".count($x)."][".count($x[0])."]");
 
- 			print(" a[".count($a)."]");
 
- 			println(" y[".count(length)."]");
 
- 		}
 
- 		$e0 = $this->chiSquared($x, $a, $y, $s, $f);
 
- 		//double lambda = 0.001;
 
- 		$done = false;
 
- 		// g = gradient, H = hessian, d = step to minimum
 
- 		// H d = -g, solve for d
 
- 		$H = array();
 
- 		$g = array();
 
- 		//double[] d = new double[nparm];
 
- 		$oos2 = array();
 
- 		for($i = 0; $i < $npts; ++$i) {
 
- 			$oos2[$i] = 1./($s[$i]*$s[$i]);
 
- 		}
 
- 		$iter = 0;
 
- 		$term = 0;	// termination count test
 
- 		do {
 
- 			++$iter;
 
- 			// hessian approximation
 
- 			for( $r = 0; $r < $nparm; ++$r) {
 
- 				for( $c = 0; $c < $nparm; ++$c) {
 
- 					for( $i = 0; $i < $npts; ++$i) {
 
- 						if ($i == 0) $H[$r][$c] = 0.;
 
- 						$xi = $x[$i];
 
- 						$H[$r][$c] += ($oos2[$i] * $f->grad($xi, $a, $r) * $f->grad($xi, $a, $c));
 
- 					}  //npts
 
- 				} //c
 
- 			} //r
 
- 			// boost diagonal towards gradient descent
 
- 			for( $r = 0; $r < $nparm; ++$r)
 
- 				$H[$r][$r] *= (1. + $lambda);
 
- 			// gradient
 
- 			for( $r = 0; $r < $nparm; ++$r) {
 
- 				for( $i = 0; $i < $npts; ++$i) {
 
- 					if ($i == 0) $g[$r] = 0.;
 
- 					$xi = $x[$i];
 
- 					$g[$r] += ($oos2[$i] * ($y[$i]-$f->val($xi,$a)) * $f->grad($xi, $a, $r));
 
- 				}
 
- 			} //npts
 
- 			// scale (for consistency with NR, not necessary)
 
- 			if ($false) {
 
- 				for( $r = 0; $r < $nparm; ++$r) {
 
- 					$g[$r] = -0.5 * $g[$r];
 
- 					for( $c = 0; $c < $nparm; ++$c) {
 
- 						$H[$r][$c] *= 0.5;
 
- 					}
 
- 				}
 
- 			}
 
- 			// solve H d = -g, evaluate error at new location
 
- 			//double[] d = DoubleMatrix.solve(H, g);
 
- //			double[] d = (new Matrix(H)).lu().solve(new Matrix(g, nparm)).getRowPackedCopy();
 
- 			//double[] na = DoubleVector.add(a, d);
 
- //			double[] na = (new Matrix(a, nparm)).plus(new Matrix(d, nparm)).getRowPackedCopy();
 
- //			double e1 = chiSquared(x, na, y, s, f);
 
- //			if (verbose > 0) {
 
- //				System.out.println("\n\niteration "+iter+" lambda = "+lambda);
 
- //				System.out.print("a = ");
 
- //				(new Matrix(a, nparm)).print(10, 2);
 
- //				if (verbose > 1) {
 
- //					System.out.print("H = ");
 
- //					(new Matrix(H)).print(10, 2);
 
- //					System.out.print("g = ");
 
- //					(new Matrix(g, nparm)).print(10, 2);
 
- //					System.out.print("d = ");
 
- //					(new Matrix(d, nparm)).print(10, 2);
 
- //				}
 
- //				System.out.print("e0 = " + e0 + ": ");
 
- //				System.out.print("moved from ");
 
- //				(new Matrix(a, nparm)).print(10, 2);
 
- //				System.out.print("e1 = " + e1 + ": ");
 
- //				if (e1 < e0) {
 
- //					System.out.print("to ");
 
- //					(new Matrix(na, nparm)).print(10, 2);
 
- //				} else {
 
- //					System.out.println("move rejected");
 
- //				}
 
- //			}
 
- 			// termination test (slightly different than NR)
 
- //			if (Math.abs(e1-e0) > termepsilon) {
 
- //				term = 0;
 
- //			} else {
 
- //				term++;
 
- //				if (term == 4) {
 
- //					System.out.println("terminating after " + iter + " iterations");
 
- //					done = true;
 
- //				}
 
- //			}
 
- //			if (iter >= maxiter) done = true;
 
- 			// in the C++ version, found that changing this to e1 >= e0
 
- 			// was not a good idea.  See comment there.
 
- 			//
 
- //			if (e1 > e0 || Double.isNaN(e1)) { // new location worse than before
 
- //				lambda *= 10.;
 
- //			} else {		// new location better, accept new parameters
 
- //				lambda *= 0.1;
 
- //				e0 = e1;
 
- //				// simply assigning a = na will not get results copied back to caller
 
- //				for( int i = 0; i < nparm; i++ ) {
 
- //					if (vary[i]) a[i] = na[i];
 
- //				}
 
- //			}
 
- 		} while(!$done);
 
- 		return $lambda;
 
- 	}	//	function solve()
 
- }	//	class LevenbergMarquardt
 
 
  |