| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877 | ;(function (globalScope) {  'use strict';  /*   *  decimal.js v10.2.0   *  An arbitrary-precision Decimal type for JavaScript.   *  https://github.com/MikeMcl/decimal.js   *  Copyright (c) 2019 Michael Mclaughlin <M8ch88l@gmail.com>   *  MIT Licence   */  // -----------------------------------  EDITABLE DEFAULTS  ------------------------------------ //    // The maximum exponent magnitude.    // The limit on the value of `toExpNeg`, `toExpPos`, `minE` and `maxE`.  var EXP_LIMIT = 9e15,                      // 0 to 9e15    // The limit on the value of `precision`, and on the value of the first argument to    // `toDecimalPlaces`, `toExponential`, `toFixed`, `toPrecision` and `toSignificantDigits`.    MAX_DIGITS = 1e9,                        // 0 to 1e9    // Base conversion alphabet.    NUMERALS = '0123456789abcdef',    // The natural logarithm of 10 (1025 digits).    LN10 = '2.3025850929940456840179914546843642076011014886287729760333279009675726096773524802359972050895982983419677840422862486334095254650828067566662873690987816894829072083255546808437998948262331985283935053089653777326288461633662222876982198867465436674744042432743651550489343149393914796194044002221051017141748003688084012647080685567743216228355220114804663715659121373450747856947683463616792101806445070648000277502684916746550586856935673420670581136429224554405758925724208241314695689016758940256776311356919292033376587141660230105703089634572075440370847469940168269282808481184289314848524948644871927809676271275775397027668605952496716674183485704422507197965004714951050492214776567636938662976979522110718264549734772662425709429322582798502585509785265383207606726317164309505995087807523710333101197857547331541421808427543863591778117054309827482385045648019095610299291824318237525357709750539565187697510374970888692180205189339507238539205144634197265287286965110862571492198849978748873771345686209167058',    // Pi (1025 digits).    PI = '3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632789',    // The initial configuration properties of the Decimal constructor.    DEFAULTS = {      // These values must be integers within the stated ranges (inclusive).      // Most of these values can be changed at run-time using the `Decimal.config` method.      // The maximum number of significant digits of the result of a calculation or base conversion.      // E.g. `Decimal.config({ precision: 20 });`      precision: 20,                         // 1 to MAX_DIGITS      // The rounding mode used when rounding to `precision`.      //      // ROUND_UP         0 Away from zero.      // ROUND_DOWN       1 Towards zero.      // ROUND_CEIL       2 Towards +Infinity.      // ROUND_FLOOR      3 Towards -Infinity.      // ROUND_HALF_UP    4 Towards nearest neighbour. If equidistant, up.      // ROUND_HALF_DOWN  5 Towards nearest neighbour. If equidistant, down.      // ROUND_HALF_EVEN  6 Towards nearest neighbour. If equidistant, towards even neighbour.      // ROUND_HALF_CEIL  7 Towards nearest neighbour. If equidistant, towards +Infinity.      // ROUND_HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.      //      // E.g.      // `Decimal.rounding = 4;`      // `Decimal.rounding = Decimal.ROUND_HALF_UP;`      rounding: 4,                           // 0 to 8      // The modulo mode used when calculating the modulus: a mod n.      // The quotient (q = a / n) is calculated according to the corresponding rounding mode.      // The remainder (r) is calculated as: r = a - n * q.      //      // UP         0 The remainder is positive if the dividend is negative, else is negative.      // DOWN       1 The remainder has the same sign as the dividend (JavaScript %).      // FLOOR      3 The remainder has the same sign as the divisor (Python %).      // HALF_EVEN  6 The IEEE 754 remainder function.      // EUCLID     9 Euclidian division. q = sign(n) * floor(a / abs(n)). Always positive.      //      // Truncated division (1), floored division (3), the IEEE 754 remainder (6), and Euclidian      // division (9) are commonly used for the modulus operation. The other rounding modes can also      // be used, but they may not give useful results.      modulo: 1,                             // 0 to 9      // The exponent value at and beneath which `toString` returns exponential notation.      // JavaScript numbers: -7      toExpNeg: -7,                          // 0 to -EXP_LIMIT      // The exponent value at and above which `toString` returns exponential notation.      // JavaScript numbers: 21      toExpPos:  21,                         // 0 to EXP_LIMIT      // The minimum exponent value, beneath which underflow to zero occurs.      // JavaScript numbers: -324  (5e-324)      minE: -EXP_LIMIT,                      // -1 to -EXP_LIMIT      // The maximum exponent value, above which overflow to Infinity occurs.      // JavaScript numbers: 308  (1.7976931348623157e+308)      maxE: EXP_LIMIT,                       // 1 to EXP_LIMIT      // Whether to use cryptographically-secure random number generation, if available.      crypto: false                          // true/false    },  // ----------------------------------- END OF EDITABLE DEFAULTS ------------------------------- //    Decimal, inexact, noConflict, quadrant,    external = true,    decimalError = '[DecimalError] ',    invalidArgument = decimalError + 'Invalid argument: ',    precisionLimitExceeded = decimalError + 'Precision limit exceeded',    cryptoUnavailable = decimalError + 'crypto unavailable',    mathfloor = Math.floor,    mathpow = Math.pow,    isBinary = /^0b([01]+(\.[01]*)?|\.[01]+)(p[+-]?\d+)?$/i,    isHex = /^0x([0-9a-f]+(\.[0-9a-f]*)?|\.[0-9a-f]+)(p[+-]?\d+)?$/i,    isOctal = /^0o([0-7]+(\.[0-7]*)?|\.[0-7]+)(p[+-]?\d+)?$/i,    isDecimal = /^(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i,    BASE = 1e7,    LOG_BASE = 7,    MAX_SAFE_INTEGER = 9007199254740991,    LN10_PRECISION = LN10.length - 1,    PI_PRECISION = PI.length - 1,    // Decimal.prototype object    P = { name: '[object Decimal]' };  // Decimal prototype methods  /*   *  absoluteValue             abs   *  ceil   *  comparedTo                cmp   *  cosine                    cos   *  cubeRoot                  cbrt   *  decimalPlaces             dp   *  dividedBy                 div   *  dividedToIntegerBy        divToInt   *  equals                    eq   *  floor   *  greaterThan               gt   *  greaterThanOrEqualTo      gte   *  hyperbolicCosine          cosh   *  hyperbolicSine            sinh   *  hyperbolicTangent         tanh   *  inverseCosine             acos   *  inverseHyperbolicCosine   acosh   *  inverseHyperbolicSine     asinh   *  inverseHyperbolicTangent  atanh   *  inverseSine               asin   *  inverseTangent            atan   *  isFinite   *  isInteger                 isInt   *  isNaN   *  isNegative                isNeg   *  isPositive                isPos   *  isZero   *  lessThan                  lt   *  lessThanOrEqualTo         lte   *  logarithm                 log   *  [maximum]                 [max]   *  [minimum]                 [min]   *  minus                     sub   *  modulo                    mod   *  naturalExponential        exp   *  naturalLogarithm          ln   *  negated                   neg   *  plus                      add   *  precision                 sd   *  round   *  sine                      sin   *  squareRoot                sqrt   *  tangent                   tan   *  times                     mul   *  toBinary   *  toDecimalPlaces           toDP   *  toExponential   *  toFixed   *  toFraction   *  toHexadecimal             toHex   *  toNearest   *  toNumber   *  toOctal   *  toPower                   pow   *  toPrecision   *  toSignificantDigits       toSD   *  toString   *  truncated                 trunc   *  valueOf                   toJSON   */  /*   * Return a new Decimal whose value is the absolute value of this Decimal.   *   */  P.absoluteValue = P.abs = function () {    var x = new this.constructor(this);    if (x.s < 0) x.s = 1;    return finalise(x);  };  /*   * Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the   * direction of positive Infinity.   *   */  P.ceil = function () {    return finalise(new this.constructor(this), this.e + 1, 2);  };  /*   * Return   *   1    if the value of this Decimal is greater than the value of `y`,   *  -1    if the value of this Decimal is less than the value of `y`,   *   0    if they have the same value,   *   NaN  if the value of either Decimal is NaN.   *   */  P.comparedTo = P.cmp = function (y) {    var i, j, xdL, ydL,      x = this,      xd = x.d,      yd = (y = new x.constructor(y)).d,      xs = x.s,      ys = y.s;    // Either NaN or ±Infinity?    if (!xd || !yd) {      return !xs || !ys ? NaN : xs !== ys ? xs : xd === yd ? 0 : !xd ^ xs < 0 ? 1 : -1;    }    // Either zero?    if (!xd[0] || !yd[0]) return xd[0] ? xs : yd[0] ? -ys : 0;    // Signs differ?    if (xs !== ys) return xs;    // Compare exponents.    if (x.e !== y.e) return x.e > y.e ^ xs < 0 ? 1 : -1;    xdL = xd.length;    ydL = yd.length;    // Compare digit by digit.    for (i = 0, j = xdL < ydL ? xdL : ydL; i < j; ++i) {      if (xd[i] !== yd[i]) return xd[i] > yd[i] ^ xs < 0 ? 1 : -1;    }    // Compare lengths.    return xdL === ydL ? 0 : xdL > ydL ^ xs < 0 ? 1 : -1;  };  /*   * Return a new Decimal whose value is the cosine of the value in radians of this Decimal.   *   * Domain: [-Infinity, Infinity]   * Range: [-1, 1]   *   * cos(0)         = 1   * cos(-0)        = 1   * cos(Infinity)  = NaN   * cos(-Infinity) = NaN   * cos(NaN)       = NaN   *   */  P.cosine = P.cos = function () {    var pr, rm,      x = this,      Ctor = x.constructor;    if (!x.d) return new Ctor(NaN);    // cos(0) = cos(-0) = 1    if (!x.d[0]) return new Ctor(1);    pr = Ctor.precision;    rm = Ctor.rounding;    Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE;    Ctor.rounding = 1;    x = cosine(Ctor, toLessThanHalfPi(Ctor, x));    Ctor.precision = pr;    Ctor.rounding = rm;    return finalise(quadrant == 2 || quadrant == 3 ? x.neg() : x, pr, rm, true);  };  /*   *   * Return a new Decimal whose value is the cube root of the value of this Decimal, rounded to   * `precision` significant digits using rounding mode `rounding`.   *   *  cbrt(0)  =  0   *  cbrt(-0) = -0   *  cbrt(1)  =  1   *  cbrt(-1) = -1   *  cbrt(N)  =  N   *  cbrt(-I) = -I   *  cbrt(I)  =  I   *   * Math.cbrt(x) = (x < 0 ? -Math.pow(-x, 1/3) : Math.pow(x, 1/3))   *   */  P.cubeRoot = P.cbrt = function () {    var e, m, n, r, rep, s, sd, t, t3, t3plusx,      x = this,      Ctor = x.constructor;    if (!x.isFinite() || x.isZero()) return new Ctor(x);    external = false;    // Initial estimate.    s = x.s * mathpow(x.s * x, 1 / 3);     // Math.cbrt underflow/overflow?     // Pass x to Math.pow as integer, then adjust the exponent of the result.    if (!s || Math.abs(s) == 1 / 0) {      n = digitsToString(x.d);      e = x.e;      // Adjust n exponent so it is a multiple of 3 away from x exponent.      if (s = (e - n.length + 1) % 3) n += (s == 1 || s == -2 ? '0' : '00');      s = mathpow(n, 1 / 3);      // Rarely, e may be one less than the result exponent value.      e = mathfloor((e + 1) / 3) - (e % 3 == (e < 0 ? -1 : 2));      if (s == 1 / 0) {        n = '5e' + e;      } else {        n = s.toExponential();        n = n.slice(0, n.indexOf('e') + 1) + e;      }      r = new Ctor(n);      r.s = x.s;    } else {      r = new Ctor(s.toString());    }    sd = (e = Ctor.precision) + 3;    // Halley's method.    // TODO? Compare Newton's method.    for (;;) {      t = r;      t3 = t.times(t).times(t);      t3plusx = t3.plus(x);      r = divide(t3plusx.plus(x).times(t), t3plusx.plus(t3), sd + 2, 1);      // TODO? Replace with for-loop and checkRoundingDigits.      if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) {        n = n.slice(sd - 3, sd + 1);        // The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or 4999        // , i.e. approaching a rounding boundary, continue the iteration.        if (n == '9999' || !rep && n == '4999') {          // On the first iteration only, check to see if rounding up gives the exact result as the          // nines may infinitely repeat.          if (!rep) {            finalise(t, e + 1, 0);            if (t.times(t).times(t).eq(x)) {              r = t;              break;            }          }          sd += 4;          rep = 1;        } else {          // If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result.          // If not, then there are further digits and m will be truthy.          if (!+n || !+n.slice(1) && n.charAt(0) == '5') {            // Truncate to the first rounding digit.            finalise(r, e + 1, 1);            m = !r.times(r).times(r).eq(x);          }          break;        }      }    }    external = true;    return finalise(r, e, Ctor.rounding, m);  };  /*   * Return the number of decimal places of the value of this Decimal.   *   */  P.decimalPlaces = P.dp = function () {    var w,      d = this.d,      n = NaN;    if (d) {      w = d.length - 1;      n = (w - mathfloor(this.e / LOG_BASE)) * LOG_BASE;      // Subtract the number of trailing zeros of the last word.      w = d[w];      if (w) for (; w % 10 == 0; w /= 10) n--;      if (n < 0) n = 0;    }    return n;  };  /*   *  n / 0 = I   *  n / N = N   *  n / I = 0   *  0 / n = 0   *  0 / 0 = N   *  0 / N = N   *  0 / I = 0   *  N / n = N   *  N / 0 = N   *  N / N = N   *  N / I = N   *  I / n = I   *  I / 0 = I   *  I / N = N   *  I / I = N   *   * Return a new Decimal whose value is the value of this Decimal divided by `y`, rounded to   * `precision` significant digits using rounding mode `rounding`.   *   */  P.dividedBy = P.div = function (y) {    return divide(this, new this.constructor(y));  };  /*   * Return a new Decimal whose value is the integer part of dividing the value of this Decimal   * by the value of `y`, rounded to `precision` significant digits using rounding mode `rounding`.   *   */  P.dividedToIntegerBy = P.divToInt = function (y) {    var x = this,      Ctor = x.constructor;    return finalise(divide(x, new Ctor(y), 0, 1, 1), Ctor.precision, Ctor.rounding);  };  /*   * Return true if the value of this Decimal is equal to the value of `y`, otherwise return false.   *   */  P.equals = P.eq = function (y) {    return this.cmp(y) === 0;  };  /*   * Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the   * direction of negative Infinity.   *   */  P.floor = function () {    return finalise(new this.constructor(this), this.e + 1, 3);  };  /*   * Return true if the value of this Decimal is greater than the value of `y`, otherwise return   * false.   *   */  P.greaterThan = P.gt = function (y) {    return this.cmp(y) > 0;  };  /*   * Return true if the value of this Decimal is greater than or equal to the value of `y`,   * otherwise return false.   *   */  P.greaterThanOrEqualTo = P.gte = function (y) {    var k = this.cmp(y);    return k == 1 || k === 0;  };  /*   * Return a new Decimal whose value is the hyperbolic cosine of the value in radians of this   * Decimal.   *   * Domain: [-Infinity, Infinity]   * Range: [1, Infinity]   *   * cosh(x) = 1 + x^2/2! + x^4/4! + x^6/6! + ...   *   * cosh(0)         = 1   * cosh(-0)        = 1   * cosh(Infinity)  = Infinity   * cosh(-Infinity) = Infinity   * cosh(NaN)       = NaN   *   *  x        time taken (ms)   result   * 1000      9                 9.8503555700852349694e+433   * 10000     25                4.4034091128314607936e+4342   * 100000    171               1.4033316802130615897e+43429   * 1000000   3817              1.5166076984010437725e+434294   * 10000000  abandoned after 2 minute wait   *   * TODO? Compare performance of cosh(x) = 0.5 * (exp(x) + exp(-x))   *   */  P.hyperbolicCosine = P.cosh = function () {    var k, n, pr, rm, len,      x = this,      Ctor = x.constructor,      one = new Ctor(1);    if (!x.isFinite()) return new Ctor(x.s ? 1 / 0 : NaN);    if (x.isZero()) return one;    pr = Ctor.precision;    rm = Ctor.rounding;    Ctor.precision = pr + Math.max(x.e, x.sd()) + 4;    Ctor.rounding = 1;    len = x.d.length;    // Argument reduction: cos(4x) = 1 - 8cos^2(x) + 8cos^4(x) + 1    // i.e. cos(x) = 1 - cos^2(x/4)(8 - 8cos^2(x/4))    // Estimate the optimum number of times to use the argument reduction.    // TODO? Estimation reused from cosine() and may not be optimal here.    if (len < 32) {      k = Math.ceil(len / 3);      n = (1 / tinyPow(4, k)).toString();    } else {      k = 16;      n = '2.3283064365386962890625e-10';    }    x = taylorSeries(Ctor, 1, x.times(n), new Ctor(1), true);    // Reverse argument reduction    var cosh2_x,      i = k,      d8 = new Ctor(8);    for (; i--;) {      cosh2_x = x.times(x);      x = one.minus(cosh2_x.times(d8.minus(cosh2_x.times(d8))));    }    return finalise(x, Ctor.precision = pr, Ctor.rounding = rm, true);  };  /*   * Return a new Decimal whose value is the hyperbolic sine of the value in radians of this   * Decimal.   *   * Domain: [-Infinity, Infinity]   * Range: [-Infinity, Infinity]   *   * sinh(x) = x + x^3/3! + x^5/5! + x^7/7! + ...   *   * sinh(0)         = 0   * sinh(-0)        = -0   * sinh(Infinity)  = Infinity   * sinh(-Infinity) = -Infinity   * sinh(NaN)       = NaN   *   * x        time taken (ms)   * 10       2 ms   * 100      5 ms   * 1000     14 ms   * 10000    82 ms   * 100000   886 ms            1.4033316802130615897e+43429   * 200000   2613 ms   * 300000   5407 ms   * 400000   8824 ms   * 500000   13026 ms          8.7080643612718084129e+217146   * 1000000  48543 ms   *   * TODO? Compare performance of sinh(x) = 0.5 * (exp(x) - exp(-x))   *   */  P.hyperbolicSine = P.sinh = function () {    var k, pr, rm, len,      x = this,      Ctor = x.constructor;    if (!x.isFinite() || x.isZero()) return new Ctor(x);    pr = Ctor.precision;    rm = Ctor.rounding;    Ctor.precision = pr + Math.max(x.e, x.sd()) + 4;    Ctor.rounding = 1;    len = x.d.length;    if (len < 3) {      x = taylorSeries(Ctor, 2, x, x, true);    } else {      // Alternative argument reduction: sinh(3x) = sinh(x)(3 + 4sinh^2(x))      // i.e. sinh(x) = sinh(x/3)(3 + 4sinh^2(x/3))      // 3 multiplications and 1 addition      // Argument reduction: sinh(5x) = sinh(x)(5 + sinh^2(x)(20 + 16sinh^2(x)))      // i.e. sinh(x) = sinh(x/5)(5 + sinh^2(x/5)(20 + 16sinh^2(x/5)))      // 4 multiplications and 2 additions      // Estimate the optimum number of times to use the argument reduction.      k = 1.4 * Math.sqrt(len);      k = k > 16 ? 16 : k | 0;      x = x.times(1 / tinyPow(5, k));      x = taylorSeries(Ctor, 2, x, x, true);      // Reverse argument reduction      var sinh2_x,        d5 = new Ctor(5),        d16 = new Ctor(16),        d20 = new Ctor(20);      for (; k--;) {        sinh2_x = x.times(x);        x = x.times(d5.plus(sinh2_x.times(d16.times(sinh2_x).plus(d20))));      }    }    Ctor.precision = pr;    Ctor.rounding = rm;    return finalise(x, pr, rm, true);  };  /*   * Return a new Decimal whose value is the hyperbolic tangent of the value in radians of this   * Decimal.   *   * Domain: [-Infinity, Infinity]   * Range: [-1, 1]   *   * tanh(x) = sinh(x) / cosh(x)   *   * tanh(0)         = 0   * tanh(-0)        = -0   * tanh(Infinity)  = 1   * tanh(-Infinity) = -1   * tanh(NaN)       = NaN   *   */  P.hyperbolicTangent = P.tanh = function () {    var pr, rm,      x = this,      Ctor = x.constructor;    if (!x.isFinite()) return new Ctor(x.s);    if (x.isZero()) return new Ctor(x);    pr = Ctor.precision;    rm = Ctor.rounding;    Ctor.precision = pr + 7;    Ctor.rounding = 1;    return divide(x.sinh(), x.cosh(), Ctor.precision = pr, Ctor.rounding = rm);  };  /*   * Return a new Decimal whose value is the arccosine (inverse cosine) in radians of the value of   * this Decimal.   *   * Domain: [-1, 1]   * Range: [0, pi]   *   * acos(x) = pi/2 - asin(x)   *   * acos(0)       = pi/2   * acos(-0)      = pi/2   * acos(1)       = 0   * acos(-1)      = pi   * acos(1/2)     = pi/3   * acos(-1/2)    = 2*pi/3   * acos(|x| > 1) = NaN   * acos(NaN)     = NaN   *   */  P.inverseCosine = P.acos = function () {    var halfPi,      x = this,      Ctor = x.constructor,      k = x.abs().cmp(1),      pr = Ctor.precision,      rm = Ctor.rounding;    if (k !== -1) {      return k === 0        // |x| is 1        ? x.isNeg() ? getPi(Ctor, pr, rm) : new Ctor(0)        // |x| > 1 or x is NaN        : new Ctor(NaN);    }    if (x.isZero()) return getPi(Ctor, pr + 4, rm).times(0.5);    // TODO? Special case acos(0.5) = pi/3 and acos(-0.5) = 2*pi/3    Ctor.precision = pr + 6;    Ctor.rounding = 1;    x = x.asin();    halfPi = getPi(Ctor, pr + 4, rm).times(0.5);    Ctor.precision = pr;    Ctor.rounding = rm;    return halfPi.minus(x);  };  /*   * Return a new Decimal whose value is the inverse of the hyperbolic cosine in radians of the   * value of this Decimal.   *   * Domain: [1, Infinity]   * Range: [0, Infinity]   *   * acosh(x) = ln(x + sqrt(x^2 - 1))   *   * acosh(x < 1)     = NaN   * acosh(NaN)       = NaN   * acosh(Infinity)  = Infinity   * acosh(-Infinity) = NaN   * acosh(0)         = NaN   * acosh(-0)        = NaN   * acosh(1)         = 0   * acosh(-1)        = NaN   *   */  P.inverseHyperbolicCosine = P.acosh = function () {    var pr, rm,      x = this,      Ctor = x.constructor;    if (x.lte(1)) return new Ctor(x.eq(1) ? 0 : NaN);    if (!x.isFinite()) return new Ctor(x);    pr = Ctor.precision;    rm = Ctor.rounding;    Ctor.precision = pr + Math.max(Math.abs(x.e), x.sd()) + 4;    Ctor.rounding = 1;    external = false;    x = x.times(x).minus(1).sqrt().plus(x);    external = true;    Ctor.precision = pr;    Ctor.rounding = rm;    return x.ln();  };  /*   * Return a new Decimal whose value is the inverse of the hyperbolic sine in radians of the value   * of this Decimal.   *   * Domain: [-Infinity, Infinity]   * Range: [-Infinity, Infinity]   *   * asinh(x) = ln(x + sqrt(x^2 + 1))   *   * asinh(NaN)       = NaN   * asinh(Infinity)  = Infinity   * asinh(-Infinity) = -Infinity   * asinh(0)         = 0   * asinh(-0)        = -0   *   */  P.inverseHyperbolicSine = P.asinh = function () {    var pr, rm,      x = this,      Ctor = x.constructor;    if (!x.isFinite() || x.isZero()) return new Ctor(x);    pr = Ctor.precision;    rm = Ctor.rounding;    Ctor.precision = pr + 2 * Math.max(Math.abs(x.e), x.sd()) + 6;    Ctor.rounding = 1;    external = false;    x = x.times(x).plus(1).sqrt().plus(x);    external = true;    Ctor.precision = pr;    Ctor.rounding = rm;    return x.ln();  };  /*   * Return a new Decimal whose value is the inverse of the hyperbolic tangent in radians of the   * value of this Decimal.   *   * Domain: [-1, 1]   * Range: [-Infinity, Infinity]   *   * atanh(x) = 0.5 * ln((1 + x) / (1 - x))   *   * atanh(|x| > 1)   = NaN   * atanh(NaN)       = NaN   * atanh(Infinity)  = NaN   * atanh(-Infinity) = NaN   * atanh(0)         = 0   * atanh(-0)        = -0   * atanh(1)         = Infinity   * atanh(-1)        = -Infinity   *   */  P.inverseHyperbolicTangent = P.atanh = function () {    var pr, rm, wpr, xsd,      x = this,      Ctor = x.constructor;    if (!x.isFinite()) return new Ctor(NaN);    if (x.e >= 0) return new Ctor(x.abs().eq(1) ? x.s / 0 : x.isZero() ? x : NaN);    pr = Ctor.precision;    rm = Ctor.rounding;    xsd = x.sd();    if (Math.max(xsd, pr) < 2 * -x.e - 1) return finalise(new Ctor(x), pr, rm, true);    Ctor.precision = wpr = xsd - x.e;    x = divide(x.plus(1), new Ctor(1).minus(x), wpr + pr, 1);    Ctor.precision = pr + 4;    Ctor.rounding = 1;    x = x.ln();    Ctor.precision = pr;    Ctor.rounding = rm;    return x.times(0.5);  };  /*   * Return a new Decimal whose value is the arcsine (inverse sine) in radians of the value of this   * Decimal.   *   * Domain: [-Infinity, Infinity]   * Range: [-pi/2, pi/2]   *   * asin(x) = 2*atan(x/(1 + sqrt(1 - x^2)))   *   * asin(0)       = 0   * asin(-0)      = -0   * asin(1/2)     = pi/6   * asin(-1/2)    = -pi/6   * asin(1)       = pi/2   * asin(-1)      = -pi/2   * asin(|x| > 1) = NaN   * asin(NaN)     = NaN   *   * TODO? Compare performance of Taylor series.   *   */  P.inverseSine = P.asin = function () {    var halfPi, k,      pr, rm,      x = this,      Ctor = x.constructor;    if (x.isZero()) return new Ctor(x);    k = x.abs().cmp(1);    pr = Ctor.precision;    rm = Ctor.rounding;    if (k !== -1) {      // |x| is 1      if (k === 0) {        halfPi = getPi(Ctor, pr + 4, rm).times(0.5);        halfPi.s = x.s;        return halfPi;      }      // |x| > 1 or x is NaN      return new Ctor(NaN);    }    // TODO? Special case asin(1/2) = pi/6 and asin(-1/2) = -pi/6    Ctor.precision = pr + 6;    Ctor.rounding = 1;    x = x.div(new Ctor(1).minus(x.times(x)).sqrt().plus(1)).atan();    Ctor.precision = pr;    Ctor.rounding = rm;    return x.times(2);  };  /*   * Return a new Decimal whose value is the arctangent (inverse tangent) in radians of the value   * of this Decimal.   *   * Domain: [-Infinity, Infinity]   * Range: [-pi/2, pi/2]   *   * atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...   *   * atan(0)         = 0   * atan(-0)        = -0   * atan(1)         = pi/4   * atan(-1)        = -pi/4   * atan(Infinity)  = pi/2   * atan(-Infinity) = -pi/2   * atan(NaN)       = NaN   *   */  P.inverseTangent = P.atan = function () {    var i, j, k, n, px, t, r, wpr, x2,      x = this,      Ctor = x.constructor,      pr = Ctor.precision,      rm = Ctor.rounding;    if (!x.isFinite()) {      if (!x.s) return new Ctor(NaN);      if (pr + 4 <= PI_PRECISION) {        r = getPi(Ctor, pr + 4, rm).times(0.5);        r.s = x.s;        return r;      }    } else if (x.isZero()) {      return new Ctor(x);    } else if (x.abs().eq(1) && pr + 4 <= PI_PRECISION) {      r = getPi(Ctor, pr + 4, rm).times(0.25);      r.s = x.s;      return r;    }    Ctor.precision = wpr = pr + 10;    Ctor.rounding = 1;    // TODO? if (x >= 1 && pr <= PI_PRECISION) atan(x) = halfPi * x.s - atan(1 / x);    // Argument reduction    // Ensure |x| < 0.42    // atan(x) = 2 * atan(x / (1 + sqrt(1 + x^2)))    k = Math.min(28, wpr / LOG_BASE + 2 | 0);    for (i = k; i; --i) x = x.div(x.times(x).plus(1).sqrt().plus(1));    external = false;    j = Math.ceil(wpr / LOG_BASE);    n = 1;    x2 = x.times(x);    r = new Ctor(x);    px = x;    // atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...    for (; i !== -1;) {      px = px.times(x2);      t = r.minus(px.div(n += 2));      px = px.times(x2);      r = t.plus(px.div(n += 2));      if (r.d[j] !== void 0) for (i = j; r.d[i] === t.d[i] && i--;);    }    if (k) r = r.times(2 << (k - 1));    external = true;    return finalise(r, Ctor.precision = pr, Ctor.rounding = rm, true);  };  /*   * Return true if the value of this Decimal is a finite number, otherwise return false.   *   */  P.isFinite = function () {    return !!this.d;  };  /*   * Return true if the value of this Decimal is an integer, otherwise return false.   *   */  P.isInteger = P.isInt = function () {    return !!this.d && mathfloor(this.e / LOG_BASE) > this.d.length - 2;  };  /*   * Return true if the value of this Decimal is NaN, otherwise return false.   *   */  P.isNaN = function () {    return !this.s;  };  /*   * Return true if the value of this Decimal is negative, otherwise return false.   *   */  P.isNegative = P.isNeg = function () {    return this.s < 0;  };  /*   * Return true if the value of this Decimal is positive, otherwise return false.   *   */  P.isPositive = P.isPos = function () {    return this.s > 0;  };  /*   * Return true if the value of this Decimal is 0 or -0, otherwise return false.   *   */  P.isZero = function () {    return !!this.d && this.d[0] === 0;  };  /*   * Return true if the value of this Decimal is less than `y`, otherwise return false.   *   */  P.lessThan = P.lt = function (y) {    return this.cmp(y) < 0;  };  /*   * Return true if the value of this Decimal is less than or equal to `y`, otherwise return false.   *   */  P.lessThanOrEqualTo = P.lte = function (y) {    return this.cmp(y) < 1;  };  /*   * Return the logarithm of the value of this Decimal to the specified base, rounded to `precision`   * significant digits using rounding mode `rounding`.   *   * If no base is specified, return log[10](arg).   *   * log[base](arg) = ln(arg) / ln(base)   *   * The result will always be correctly rounded if the base of the log is 10, and 'almost always'   * otherwise:   *   * Depending on the rounding mode, the result may be incorrectly rounded if the first fifteen   * rounding digits are [49]99999999999999 or [50]00000000000000. In that case, the maximum error   * between the result and the correctly rounded result will be one ulp (unit in the last place).   *   * log[-b](a)       = NaN   * log[0](a)        = NaN   * log[1](a)        = NaN   * log[NaN](a)      = NaN   * log[Infinity](a) = NaN   * log[b](0)        = -Infinity   * log[b](-0)       = -Infinity   * log[b](-a)       = NaN   * log[b](1)        = 0   * log[b](Infinity) = Infinity   * log[b](NaN)      = NaN   *   * [base] {number|string|Decimal} The base of the logarithm.   *   */  P.logarithm = P.log = function (base) {    var isBase10, d, denominator, k, inf, num, sd, r,      arg = this,      Ctor = arg.constructor,      pr = Ctor.precision,      rm = Ctor.rounding,      guard = 5;    // Default base is 10.    if (base == null) {      base = new Ctor(10);      isBase10 = true;    } else {      base = new Ctor(base);      d = base.d;      // Return NaN if base is negative, or non-finite, or is 0 or 1.      if (base.s < 0 || !d || !d[0] || base.eq(1)) return new Ctor(NaN);      isBase10 = base.eq(10);    }    d = arg.d;    // Is arg negative, non-finite, 0 or 1?    if (arg.s < 0 || !d || !d[0] || arg.eq(1)) {      return new Ctor(d && !d[0] ? -1 / 0 : arg.s != 1 ? NaN : d ? 0 : 1 / 0);    }    // The result will have a non-terminating decimal expansion if base is 10 and arg is not an    // integer power of 10.    if (isBase10) {      if (d.length > 1) {        inf = true;      } else {        for (k = d[0]; k % 10 === 0;) k /= 10;        inf = k !== 1;      }    }    external = false;    sd = pr + guard;    num = naturalLogarithm(arg, sd);    denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd);    // The result will have 5 rounding digits.    r = divide(num, denominator, sd, 1);    // If at a rounding boundary, i.e. the result's rounding digits are [49]9999 or [50]0000,    // calculate 10 further digits.    //    // If the result is known to have an infinite decimal expansion, repeat this until it is clear    // that the result is above or below the boundary. Otherwise, if after calculating the 10    // further digits, the last 14 are nines, round up and assume the result is exact.    // Also assume the result is exact if the last 14 are zero.    //    // Example of a result that will be incorrectly rounded:    // log[1048576](4503599627370502) = 2.60000000000000009610279511444746...    // The above result correctly rounded using ROUND_CEIL to 1 decimal place should be 2.7, but it    // will be given as 2.6 as there are 15 zeros immediately after the requested decimal place, so    // the exact result would be assumed to be 2.6, which rounded using ROUND_CEIL to 1 decimal    // place is still 2.6.    if (checkRoundingDigits(r.d, k = pr, rm)) {      do {        sd += 10;        num = naturalLogarithm(arg, sd);        denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd);        r = divide(num, denominator, sd, 1);        if (!inf) {          // Check for 14 nines from the 2nd rounding digit, as the first may be 4.          if (+digitsToString(r.d).slice(k + 1, k + 15) + 1 == 1e14) {            r = finalise(r, pr + 1, 0);          }          break;        }      } while (checkRoundingDigits(r.d, k += 10, rm));    }    external = true;    return finalise(r, pr, rm);  };  /*   * Return a new Decimal whose value is the maximum of the arguments and the value of this Decimal.   *   * arguments {number|string|Decimal}   *  P.max = function () {    Array.prototype.push.call(arguments, this);    return maxOrMin(this.constructor, arguments, 'lt');  };   */  /*   * Return a new Decimal whose value is the minimum of the arguments and the value of this Decimal.   *   * arguments {number|string|Decimal}   *  P.min = function () {    Array.prototype.push.call(arguments, this);    return maxOrMin(this.constructor, arguments, 'gt');  };   */  /*   *  n - 0 = n   *  n - N = N   *  n - I = -I   *  0 - n = -n   *  0 - 0 = 0   *  0 - N = N   *  0 - I = -I   *  N - n = N   *  N - 0 = N   *  N - N = N   *  N - I = N   *  I - n = I   *  I - 0 = I   *  I - N = N   *  I - I = N   *   * Return a new Decimal whose value is the value of this Decimal minus `y`, rounded to `precision`   * significant digits using rounding mode `rounding`.   *   */  P.minus = P.sub = function (y) {    var d, e, i, j, k, len, pr, rm, xd, xe, xLTy, yd,      x = this,      Ctor = x.constructor;    y = new Ctor(y);    // If either is not finite...    if (!x.d || !y.d) {      // Return NaN if either is NaN.      if (!x.s || !y.s) y = new Ctor(NaN);      // Return y negated if x is finite and y is ±Infinity.      else if (x.d) y.s = -y.s;      // Return x if y is finite and x is ±Infinity.      // Return x if both are ±Infinity with different signs.      // Return NaN if both are ±Infinity with the same sign.      else y = new Ctor(y.d || x.s !== y.s ? x : NaN);      return y;    }    // If signs differ...    if (x.s != y.s) {      y.s = -y.s;      return x.plus(y);    }    xd = x.d;    yd = y.d;    pr = Ctor.precision;    rm = Ctor.rounding;    // If either is zero...    if (!xd[0] || !yd[0]) {      // Return y negated if x is zero and y is non-zero.      if (yd[0]) y.s = -y.s;      // Return x if y is zero and x is non-zero.      else if (xd[0]) y = new Ctor(x);      // Return zero if both are zero.      // From IEEE 754 (2008) 6.3: 0 - 0 = -0 - -0 = -0 when rounding to -Infinity.      else return new Ctor(rm === 3 ? -0 : 0);      return external ? finalise(y, pr, rm) : y;    }    // x and y are finite, non-zero numbers with the same sign.    // Calculate base 1e7 exponents.    e = mathfloor(y.e / LOG_BASE);    xe = mathfloor(x.e / LOG_BASE);    xd = xd.slice();    k = xe - e;    // If base 1e7 exponents differ...    if (k) {      xLTy = k < 0;      if (xLTy) {        d = xd;        k = -k;        len = yd.length;      } else {        d = yd;        e = xe;        len = xd.length;      }      // Numbers with massively different exponents would result in a very high number of      // zeros needing to be prepended, but this can be avoided while still ensuring correct      // rounding by limiting the number of zeros to `Math.ceil(pr / LOG_BASE) + 2`.      i = Math.max(Math.ceil(pr / LOG_BASE), len) + 2;      if (k > i) {        k = i;        d.length = 1;      }      // Prepend zeros to equalise exponents.      d.reverse();      for (i = k; i--;) d.push(0);      d.reverse();    // Base 1e7 exponents equal.    } else {      // Check digits to determine which is the bigger number.      i = xd.length;      len = yd.length;      xLTy = i < len;      if (xLTy) len = i;      for (i = 0; i < len; i++) {        if (xd[i] != yd[i]) {          xLTy = xd[i] < yd[i];          break;        }      }      k = 0;    }    if (xLTy) {      d = xd;      xd = yd;      yd = d;      y.s = -y.s;    }    len = xd.length;    // Append zeros to `xd` if shorter.    // Don't add zeros to `yd` if shorter as subtraction only needs to start at `yd` length.    for (i = yd.length - len; i > 0; --i) xd[len++] = 0;    // Subtract yd from xd.    for (i = yd.length; i > k;) {      if (xd[--i] < yd[i]) {        for (j = i; j && xd[--j] === 0;) xd[j] = BASE - 1;        --xd[j];        xd[i] += BASE;      }      xd[i] -= yd[i];    }    // Remove trailing zeros.    for (; xd[--len] === 0;) xd.pop();    // Remove leading zeros and adjust exponent accordingly.    for (; xd[0] === 0; xd.shift()) --e;    // Zero?    if (!xd[0]) return new Ctor(rm === 3 ? -0 : 0);    y.d = xd;    y.e = getBase10Exponent(xd, e);    return external ? finalise(y, pr, rm) : y;  };  /*   *   n % 0 =  N   *   n % N =  N   *   n % I =  n   *   0 % n =  0   *  -0 % n = -0   *   0 % 0 =  N   *   0 % N =  N   *   0 % I =  0   *   N % n =  N   *   N % 0 =  N   *   N % N =  N   *   N % I =  N   *   I % n =  N   *   I % 0 =  N   *   I % N =  N   *   I % I =  N   *   * Return a new Decimal whose value is the value of this Decimal modulo `y`, rounded to   * `precision` significant digits using rounding mode `rounding`.   *   * The result depends on the modulo mode.   *   */  P.modulo = P.mod = function (y) {    var q,      x = this,      Ctor = x.constructor;    y = new Ctor(y);    // Return NaN if x is ±Infinity or NaN, or y is NaN or ±0.    if (!x.d || !y.s || y.d && !y.d[0]) return new Ctor(NaN);    // Return x if y is ±Infinity or x is ±0.    if (!y.d || x.d && !x.d[0]) {      return finalise(new Ctor(x), Ctor.precision, Ctor.rounding);    }    // Prevent rounding of intermediate calculations.    external = false;    if (Ctor.modulo == 9) {      // Euclidian division: q = sign(y) * floor(x / abs(y))      // result = x - q * y    where  0 <= result < abs(y)      q = divide(x, y.abs(), 0, 3, 1);      q.s *= y.s;    } else {      q = divide(x, y, 0, Ctor.modulo, 1);    }    q = q.times(y);    external = true;    return x.minus(q);  };  /*   * Return a new Decimal whose value is the natural exponential of the value of this Decimal,   * i.e. the base e raised to the power the value of this Decimal, rounded to `precision`   * significant digits using rounding mode `rounding`.   *   */  P.naturalExponential = P.exp = function () {    return naturalExponential(this);  };  /*   * Return a new Decimal whose value is the natural logarithm of the value of this Decimal,   * rounded to `precision` significant digits using rounding mode `rounding`.   *   */  P.naturalLogarithm = P.ln = function () {    return naturalLogarithm(this);  };  /*   * Return a new Decimal whose value is the value of this Decimal negated, i.e. as if multiplied by   * -1.   *   */  P.negated = P.neg = function () {    var x = new this.constructor(this);    x.s = -x.s;    return finalise(x);  };  /*   *  n + 0 = n   *  n + N = N   *  n + I = I   *  0 + n = n   *  0 + 0 = 0   *  0 + N = N   *  0 + I = I   *  N + n = N   *  N + 0 = N   *  N + N = N   *  N + I = N   *  I + n = I   *  I + 0 = I   *  I + N = N   *  I + I = I   *   * Return a new Decimal whose value is the value of this Decimal plus `y`, rounded to `precision`   * significant digits using rounding mode `rounding`.   *   */  P.plus = P.add = function (y) {    var carry, d, e, i, k, len, pr, rm, xd, yd,      x = this,      Ctor = x.constructor;    y = new Ctor(y);    // If either is not finite...    if (!x.d || !y.d) {      // Return NaN if either is NaN.      if (!x.s || !y.s) y = new Ctor(NaN);      // Return x if y is finite and x is ±Infinity.      // Return x if both are ±Infinity with the same sign.      // Return NaN if both are ±Infinity with different signs.      // Return y if x is finite and y is ±Infinity.      else if (!x.d) y = new Ctor(y.d || x.s === y.s ? x : NaN);      return y;    }     // If signs differ...    if (x.s != y.s) {      y.s = -y.s;      return x.minus(y);    }    xd = x.d;    yd = y.d;    pr = Ctor.precision;    rm = Ctor.rounding;    // If either is zero...    if (!xd[0] || !yd[0]) {      // Return x if y is zero.      // Return y if y is non-zero.      if (!yd[0]) y = new Ctor(x);      return external ? finalise(y, pr, rm) : y;    }    // x and y are finite, non-zero numbers with the same sign.    // Calculate base 1e7 exponents.    k = mathfloor(x.e / LOG_BASE);    e = mathfloor(y.e / LOG_BASE);    xd = xd.slice();    i = k - e;    // If base 1e7 exponents differ...    if (i) {      if (i < 0) {        d = xd;        i = -i;        len = yd.length;      } else {        d = yd;        e = k;        len = xd.length;      }      // Limit number of zeros prepended to max(ceil(pr / LOG_BASE), len) + 1.      k = Math.ceil(pr / LOG_BASE);      len = k > len ? k + 1 : len + 1;      if (i > len) {        i = len;        d.length = 1;      }      // Prepend zeros to equalise exponents. Note: Faster to use reverse then do unshifts.      d.reverse();      for (; i--;) d.push(0);      d.reverse();    }    len = xd.length;    i = yd.length;    // If yd is longer than xd, swap xd and yd so xd points to the longer array.    if (len - i < 0) {      i = len;      d = yd;      yd = xd;      xd = d;    }    // Only start adding at yd.length - 1 as the further digits of xd can be left as they are.    for (carry = 0; i;) {      carry = (xd[--i] = xd[i] + yd[i] + carry) / BASE | 0;      xd[i] %= BASE;    }    if (carry) {      xd.unshift(carry);      ++e;    }    // Remove trailing zeros.    // No need to check for zero, as +x + +y != 0 && -x + -y != 0    for (len = xd.length; xd[--len] == 0;) xd.pop();    y.d = xd;    y.e = getBase10Exponent(xd, e);    return external ? finalise(y, pr, rm) : y;  };  /*   * Return the number of significant digits of the value of this Decimal.   *   * [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0.   *   */  P.precision = P.sd = function (z) {    var k,      x = this;    if (z !== void 0 && z !== !!z && z !== 1 && z !== 0) throw Error(invalidArgument + z);    if (x.d) {      k = getPrecision(x.d);      if (z && x.e + 1 > k) k = x.e + 1;    } else {      k = NaN;    }    return k;  };  /*   * Return a new Decimal whose value is the value of this Decimal rounded to a whole number using   * rounding mode `rounding`.   *   */  P.round = function () {    var x = this,      Ctor = x.constructor;    return finalise(new Ctor(x), x.e + 1, Ctor.rounding);  };  /*   * Return a new Decimal whose value is the sine of the value in radians of this Decimal.   *   * Domain: [-Infinity, Infinity]   * Range: [-1, 1]   *   * sin(x) = x - x^3/3! + x^5/5! - ...   *   * sin(0)         = 0   * sin(-0)        = -0   * sin(Infinity)  = NaN   * sin(-Infinity) = NaN   * sin(NaN)       = NaN   *   */  P.sine = P.sin = function () {    var pr, rm,      x = this,      Ctor = x.constructor;    if (!x.isFinite()) return new Ctor(NaN);    if (x.isZero()) return new Ctor(x);    pr = Ctor.precision;    rm = Ctor.rounding;    Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE;    Ctor.rounding = 1;    x = sine(Ctor, toLessThanHalfPi(Ctor, x));    Ctor.precision = pr;    Ctor.rounding = rm;    return finalise(quadrant > 2 ? x.neg() : x, pr, rm, true);  };  /*   * Return a new Decimal whose value is the square root of this Decimal, rounded to `precision`   * significant digits using rounding mode `rounding`.   *   *  sqrt(-n) =  N   *  sqrt(N)  =  N   *  sqrt(-I) =  N   *  sqrt(I)  =  I   *  sqrt(0)  =  0   *  sqrt(-0) = -0   *   */  P.squareRoot = P.sqrt = function () {    var m, n, sd, r, rep, t,      x = this,      d = x.d,      e = x.e,      s = x.s,      Ctor = x.constructor;    // Negative/NaN/Infinity/zero?    if (s !== 1 || !d || !d[0]) {      return new Ctor(!s || s < 0 && (!d || d[0]) ? NaN : d ? x : 1 / 0);    }    external = false;    // Initial estimate.    s = Math.sqrt(+x);    // Math.sqrt underflow/overflow?    // Pass x to Math.sqrt as integer, then adjust the exponent of the result.    if (s == 0 || s == 1 / 0) {      n = digitsToString(d);      if ((n.length + e) % 2 == 0) n += '0';      s = Math.sqrt(n);      e = mathfloor((e + 1) / 2) - (e < 0 || e % 2);      if (s == 1 / 0) {        n = '1e' + e;      } else {        n = s.toExponential();        n = n.slice(0, n.indexOf('e') + 1) + e;      }      r = new Ctor(n);    } else {      r = new Ctor(s.toString());    }    sd = (e = Ctor.precision) + 3;    // Newton-Raphson iteration.    for (;;) {      t = r;      r = t.plus(divide(x, t, sd + 2, 1)).times(0.5);      // TODO? Replace with for-loop and checkRoundingDigits.      if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) {        n = n.slice(sd - 3, sd + 1);        // The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or        // 4999, i.e. approaching a rounding boundary, continue the iteration.        if (n == '9999' || !rep && n == '4999') {          // On the first iteration only, check to see if rounding up gives the exact result as the          // nines may infinitely repeat.          if (!rep) {            finalise(t, e + 1, 0);            if (t.times(t).eq(x)) {              r = t;              break;            }          }          sd += 4;          rep = 1;        } else {          // If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result.          // If not, then there are further digits and m will be truthy.          if (!+n || !+n.slice(1) && n.charAt(0) == '5') {            // Truncate to the first rounding digit.            finalise(r, e + 1, 1);            m = !r.times(r).eq(x);          }          break;        }      }    }    external = true;    return finalise(r, e, Ctor.rounding, m);  };  /*   * Return a new Decimal whose value is the tangent of the value in radians of this Decimal.   *   * Domain: [-Infinity, Infinity]   * Range: [-Infinity, Infinity]   *   * tan(0)         = 0   * tan(-0)        = -0   * tan(Infinity)  = NaN   * tan(-Infinity) = NaN   * tan(NaN)       = NaN   *   */  P.tangent = P.tan = function () {    var pr, rm,      x = this,      Ctor = x.constructor;    if (!x.isFinite()) return new Ctor(NaN);    if (x.isZero()) return new Ctor(x);    pr = Ctor.precision;    rm = Ctor.rounding;    Ctor.precision = pr + 10;    Ctor.rounding = 1;    x = x.sin();    x.s = 1;    x = divide(x, new Ctor(1).minus(x.times(x)).sqrt(), pr + 10, 0);    Ctor.precision = pr;    Ctor.rounding = rm;    return finalise(quadrant == 2 || quadrant == 4 ? x.neg() : x, pr, rm, true);  };  /*   *  n * 0 = 0   *  n * N = N   *  n * I = I   *  0 * n = 0   *  0 * 0 = 0   *  0 * N = N   *  0 * I = N   *  N * n = N   *  N * 0 = N   *  N * N = N   *  N * I = N   *  I * n = I   *  I * 0 = N   *  I * N = N   *  I * I = I   *   * Return a new Decimal whose value is this Decimal times `y`, rounded to `precision` significant   * digits using rounding mode `rounding`.   *   */  P.times = P.mul = function (y) {    var carry, e, i, k, r, rL, t, xdL, ydL,      x = this,      Ctor = x.constructor,      xd = x.d,      yd = (y = new Ctor(y)).d;    y.s *= x.s;     // If either is NaN, ±Infinity or ±0...    if (!xd || !xd[0] || !yd || !yd[0]) {      return new Ctor(!y.s || xd && !xd[0] && !yd || yd && !yd[0] && !xd        // Return NaN if either is NaN.        // Return NaN if x is ±0 and y is ±Infinity, or y is ±0 and x is ±Infinity.        ? NaN        // Return ±Infinity if either is ±Infinity.        // Return ±0 if either is ±0.        : !xd || !yd ? y.s / 0 : y.s * 0);    }    e = mathfloor(x.e / LOG_BASE) + mathfloor(y.e / LOG_BASE);    xdL = xd.length;    ydL = yd.length;    // Ensure xd points to the longer array.    if (xdL < ydL) {      r = xd;      xd = yd;      yd = r;      rL = xdL;      xdL = ydL;      ydL = rL;    }    // Initialise the result array with zeros.    r = [];    rL = xdL + ydL;    for (i = rL; i--;) r.push(0);    // Multiply!    for (i = ydL; --i >= 0;) {      carry = 0;      for (k = xdL + i; k > i;) {        t = r[k] + yd[i] * xd[k - i - 1] + carry;        r[k--] = t % BASE | 0;        carry = t / BASE | 0;      }      r[k] = (r[k] + carry) % BASE | 0;    }    // Remove trailing zeros.    for (; !r[--rL];) r.pop();    if (carry) ++e;    else r.shift();    y.d = r;    y.e = getBase10Exponent(r, e);    return external ? finalise(y, Ctor.precision, Ctor.rounding) : y;  };  /*   * Return a string representing the value of this Decimal in base 2, round to `sd` significant   * digits using rounding mode `rm`.   *   * If the optional `sd` argument is present then return binary exponential notation.   *   * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   *   */  P.toBinary = function (sd, rm) {    return toStringBinary(this, 2, sd, rm);  };  /*   * Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `dp`   * decimal places using rounding mode `rm` or `rounding` if `rm` is omitted.   *   * If `dp` is omitted, return a new Decimal whose value is the value of this Decimal.   *   * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   *   */  P.toDecimalPlaces = P.toDP = function (dp, rm) {    var x = this,      Ctor = x.constructor;    x = new Ctor(x);    if (dp === void 0) return x;    checkInt32(dp, 0, MAX_DIGITS);    if (rm === void 0) rm = Ctor.rounding;    else checkInt32(rm, 0, 8);    return finalise(x, dp + x.e + 1, rm);  };  /*   * Return a string representing the value of this Decimal in exponential notation rounded to   * `dp` fixed decimal places using rounding mode `rounding`.   *   * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   *   */  P.toExponential = function (dp, rm) {    var str,      x = this,      Ctor = x.constructor;    if (dp === void 0) {      str = finiteToString(x, true);    } else {      checkInt32(dp, 0, MAX_DIGITS);      if (rm === void 0) rm = Ctor.rounding;      else checkInt32(rm, 0, 8);      x = finalise(new Ctor(x), dp + 1, rm);      str = finiteToString(x, true, dp + 1);    }    return x.isNeg() && !x.isZero() ? '-' + str : str;  };  /*   * Return a string representing the value of this Decimal in normal (fixed-point) notation to   * `dp` fixed decimal places and rounded using rounding mode `rm` or `rounding` if `rm` is   * omitted.   *   * As with JavaScript numbers, (-0).toFixed(0) is '0', but e.g. (-0.00001).toFixed(0) is '-0'.   *   * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   *   * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.   * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.   * (-0).toFixed(3) is '0.000'.   * (-0.5).toFixed(0) is '-0'.   *   */  P.toFixed = function (dp, rm) {    var str, y,      x = this,      Ctor = x.constructor;    if (dp === void 0) {      str = finiteToString(x);    } else {      checkInt32(dp, 0, MAX_DIGITS);      if (rm === void 0) rm = Ctor.rounding;      else checkInt32(rm, 0, 8);      y = finalise(new Ctor(x), dp + x.e + 1, rm);      str = finiteToString(y, false, dp + y.e + 1);    }    // To determine whether to add the minus sign look at the value before it was rounded,    // i.e. look at `x` rather than `y`.    return x.isNeg() && !x.isZero() ? '-' + str : str;  };  /*   * Return an array representing the value of this Decimal as a simple fraction with an integer   * numerator and an integer denominator.   *   * The denominator will be a positive non-zero value less than or equal to the specified maximum   * denominator. If a maximum denominator is not specified, the denominator will be the lowest   * value necessary to represent the number exactly.   *   * [maxD] {number|string|Decimal} Maximum denominator. Integer >= 1 and < Infinity.   *   */  P.toFraction = function (maxD) {    var d, d0, d1, d2, e, k, n, n0, n1, pr, q, r,      x = this,      xd = x.d,      Ctor = x.constructor;    if (!xd) return new Ctor(x);    n1 = d0 = new Ctor(1);    d1 = n0 = new Ctor(0);    d = new Ctor(d1);    e = d.e = getPrecision(xd) - x.e - 1;    k = e % LOG_BASE;    d.d[0] = mathpow(10, k < 0 ? LOG_BASE + k : k);    if (maxD == null) {      // d is 10**e, the minimum max-denominator needed.      maxD = e > 0 ? d : n1;    } else {      n = new Ctor(maxD);      if (!n.isInt() || n.lt(n1)) throw Error(invalidArgument + n);      maxD = n.gt(d) ? (e > 0 ? d : n1) : n;    }    external = false;    n = new Ctor(digitsToString(xd));    pr = Ctor.precision;    Ctor.precision = e = xd.length * LOG_BASE * 2;    for (;;)  {      q = divide(n, d, 0, 1, 1);      d2 = d0.plus(q.times(d1));      if (d2.cmp(maxD) == 1) break;      d0 = d1;      d1 = d2;      d2 = n1;      n1 = n0.plus(q.times(d2));      n0 = d2;      d2 = d;      d = n.minus(q.times(d2));      n = d2;    }    d2 = divide(maxD.minus(d0), d1, 0, 1, 1);    n0 = n0.plus(d2.times(n1));    d0 = d0.plus(d2.times(d1));    n0.s = n1.s = x.s;    // Determine which fraction is closer to x, n0/d0 or n1/d1?    r = divide(n1, d1, e, 1).minus(x).abs().cmp(divide(n0, d0, e, 1).minus(x).abs()) < 1        ? [n1, d1] : [n0, d0];    Ctor.precision = pr;    external = true;    return r;  };  /*   * Return a string representing the value of this Decimal in base 16, round to `sd` significant   * digits using rounding mode `rm`.   *   * If the optional `sd` argument is present then return binary exponential notation.   *   * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   *   */  P.toHexadecimal = P.toHex = function (sd, rm) {    return toStringBinary(this, 16, sd, rm);  };  /*   * Returns a new Decimal whose value is the nearest multiple of `y` in the direction of rounding   * mode `rm`, or `Decimal.rounding` if `rm` is omitted, to the value of this Decimal.   *   * The return value will always have the same sign as this Decimal, unless either this Decimal   * or `y` is NaN, in which case the return value will be also be NaN.   *   * The return value is not affected by the value of `precision`.   *   * y {number|string|Decimal} The magnitude to round to a multiple of.   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   *   * 'toNearest() rounding mode not an integer: {rm}'   * 'toNearest() rounding mode out of range: {rm}'   *   */  P.toNearest = function (y, rm) {    var x = this,      Ctor = x.constructor;    x = new Ctor(x);    if (y == null) {      // If x is not finite, return x.      if (!x.d) return x;      y = new Ctor(1);      rm = Ctor.rounding;    } else {      y = new Ctor(y);      if (rm === void 0) {        rm = Ctor.rounding;      } else {        checkInt32(rm, 0, 8);      }      // If x is not finite, return x if y is not NaN, else NaN.      if (!x.d) return y.s ? x : y;      // If y is not finite, return Infinity with the sign of x if y is Infinity, else NaN.      if (!y.d) {        if (y.s) y.s = x.s;        return y;      }    }    // If y is not zero, calculate the nearest multiple of y to x.    if (y.d[0]) {      external = false;      x = divide(x, y, 0, rm, 1).times(y);      external = true;      finalise(x);    // If y is zero, return zero with the sign of x.    } else {      y.s = x.s;      x = y;    }    return x;  };  /*   * Return the value of this Decimal converted to a number primitive.   * Zero keeps its sign.   *   */  P.toNumber = function () {    return +this;  };  /*   * Return a string representing the value of this Decimal in base 8, round to `sd` significant   * digits using rounding mode `rm`.   *   * If the optional `sd` argument is present then return binary exponential notation.   *   * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   *   */  P.toOctal = function (sd, rm) {    return toStringBinary(this, 8, sd, rm);  };  /*   * Return a new Decimal whose value is the value of this Decimal raised to the power `y`, rounded   * to `precision` significant digits using rounding mode `rounding`.   *   * ECMAScript compliant.   *   *   pow(x, NaN)                           = NaN   *   pow(x, ±0)                            = 1   *   pow(NaN, non-zero)                    = NaN   *   pow(abs(x) > 1, +Infinity)            = +Infinity   *   pow(abs(x) > 1, -Infinity)            = +0   *   pow(abs(x) == 1, ±Infinity)           = NaN   *   pow(abs(x) < 1, +Infinity)            = +0   *   pow(abs(x) < 1, -Infinity)            = +Infinity   *   pow(+Infinity, y > 0)                 = +Infinity   *   pow(+Infinity, y < 0)                 = +0   *   pow(-Infinity, odd integer > 0)       = -Infinity   *   pow(-Infinity, even integer > 0)      = +Infinity   *   pow(-Infinity, odd integer < 0)       = -0   *   pow(-Infinity, even integer < 0)      = +0   *   pow(+0, y > 0)                        = +0   *   pow(+0, y < 0)                        = +Infinity   *   pow(-0, odd integer > 0)              = -0   *   pow(-0, even integer > 0)             = +0   *   pow(-0, odd integer < 0)              = -Infinity   *   pow(-0, even integer < 0)             = +Infinity   *   pow(finite x < 0, finite non-integer) = NaN   *   * For non-integer or very large exponents pow(x, y) is calculated using   *   *   x^y = exp(y*ln(x))   *   * Assuming the first 15 rounding digits are each equally likely to be any digit 0-9, the   * probability of an incorrectly rounded result   * P([49]9{14} | [50]0{14}) = 2 * 0.2 * 10^-14 = 4e-15 = 1/2.5e+14   * i.e. 1 in 250,000,000,000,000   *   * If a result is incorrectly rounded the maximum error will be 1 ulp (unit in last place).   *   * y {number|string|Decimal} The power to which to raise this Decimal.   *   */  P.toPower = P.pow = function (y) {    var e, k, pr, r, rm, s,      x = this,      Ctor = x.constructor,      yn = +(y = new Ctor(y));    // Either ±Infinity, NaN or ±0?    if (!x.d || !y.d || !x.d[0] || !y.d[0]) return new Ctor(mathpow(+x, yn));    x = new Ctor(x);    if (x.eq(1)) return x;    pr = Ctor.precision;    rm = Ctor.rounding;    if (y.eq(1)) return finalise(x, pr, rm);    // y exponent    e = mathfloor(y.e / LOG_BASE);    // If y is a small integer use the 'exponentiation by squaring' algorithm.    if (e >= y.d.length - 1 && (k = yn < 0 ? -yn : yn) <= MAX_SAFE_INTEGER) {      r = intPow(Ctor, x, k, pr);      return y.s < 0 ? new Ctor(1).div(r) : finalise(r, pr, rm);    }    s = x.s;    // if x is negative    if (s < 0) {      // if y is not an integer      if (e < y.d.length - 1) return new Ctor(NaN);      // Result is positive if x is negative and the last digit of integer y is even.      if ((y.d[e] & 1) == 0) s = 1;      // if x.eq(-1)      if (x.e == 0 && x.d[0] == 1 && x.d.length == 1) {        x.s = s;        return x;      }    }    // Estimate result exponent.    // x^y = 10^e,  where e = y * log10(x)    // log10(x) = log10(x_significand) + x_exponent    // log10(x_significand) = ln(x_significand) / ln(10)    k = mathpow(+x, yn);    e = k == 0 || !isFinite(k)      ? mathfloor(yn * (Math.log('0.' + digitsToString(x.d)) / Math.LN10 + x.e + 1))      : new Ctor(k + '').e;    // Exponent estimate may be incorrect e.g. x: 0.999999999999999999, y: 2.29, e: 0, r.e: -1.    // Overflow/underflow?    if (e > Ctor.maxE + 1 || e < Ctor.minE - 1) return new Ctor(e > 0 ? s / 0 : 0);    external = false;    Ctor.rounding = x.s = 1;    // Estimate the extra guard digits needed to ensure five correct rounding digits from    // naturalLogarithm(x). Example of failure without these extra digits (precision: 10):    // new Decimal(2.32456).pow('2087987436534566.46411')    // should be 1.162377823e+764914905173815, but is 1.162355823e+764914905173815    k = Math.min(12, (e + '').length);    // r = x^y = exp(y*ln(x))    r = naturalExponential(y.times(naturalLogarithm(x, pr + k)), pr);    // r may be Infinity, e.g. (0.9999999999999999).pow(-1e+40)    if (r.d) {      // Truncate to the required precision plus five rounding digits.      r = finalise(r, pr + 5, 1);      // If the rounding digits are [49]9999 or [50]0000 increase the precision by 10 and recalculate      // the result.      if (checkRoundingDigits(r.d, pr, rm)) {        e = pr + 10;        // Truncate to the increased precision plus five rounding digits.        r = finalise(naturalExponential(y.times(naturalLogarithm(x, e + k)), e), e + 5, 1);        // Check for 14 nines from the 2nd rounding digit (the first rounding digit may be 4 or 9).        if (+digitsToString(r.d).slice(pr + 1, pr + 15) + 1 == 1e14) {          r = finalise(r, pr + 1, 0);        }      }    }    r.s = s;    external = true;    Ctor.rounding = rm;    return finalise(r, pr, rm);  };  /*   * Return a string representing the value of this Decimal rounded to `sd` significant digits   * using rounding mode `rounding`.   *   * Return exponential notation if `sd` is less than the number of digits necessary to represent   * the integer part of the value in normal notation.   *   * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   *   */  P.toPrecision = function (sd, rm) {    var str,      x = this,      Ctor = x.constructor;    if (sd === void 0) {      str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos);    } else {      checkInt32(sd, 1, MAX_DIGITS);      if (rm === void 0) rm = Ctor.rounding;      else checkInt32(rm, 0, 8);      x = finalise(new Ctor(x), sd, rm);      str = finiteToString(x, sd <= x.e || x.e <= Ctor.toExpNeg, sd);    }    return x.isNeg() && !x.isZero() ? '-' + str : str;  };  /*   * Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `sd`   * significant digits using rounding mode `rm`, or to `precision` and `rounding` respectively if   * omitted.   *   * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   *   * 'toSD() digits out of range: {sd}'   * 'toSD() digits not an integer: {sd}'   * 'toSD() rounding mode not an integer: {rm}'   * 'toSD() rounding mode out of range: {rm}'   *   */  P.toSignificantDigits = P.toSD = function (sd, rm) {    var x = this,      Ctor = x.constructor;    if (sd === void 0) {      sd = Ctor.precision;      rm = Ctor.rounding;    } else {      checkInt32(sd, 1, MAX_DIGITS);      if (rm === void 0) rm = Ctor.rounding;      else checkInt32(rm, 0, 8);    }    return finalise(new Ctor(x), sd, rm);  };  /*   * Return a string representing the value of this Decimal.   *   * Return exponential notation if this Decimal has a positive exponent equal to or greater than   * `toExpPos`, or a negative exponent equal to or less than `toExpNeg`.   *   */  P.toString = function () {    var x = this,      Ctor = x.constructor,      str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos);    return x.isNeg() && !x.isZero() ? '-' + str : str;  };  /*   * Return a new Decimal whose value is the value of this Decimal truncated to a whole number.   *   */  P.truncated = P.trunc = function () {    return finalise(new this.constructor(this), this.e + 1, 1);  };  /*   * Return a string representing the value of this Decimal.   * Unlike `toString`, negative zero will include the minus sign.   *   */  P.valueOf = P.toJSON = function () {    var x = this,      Ctor = x.constructor,      str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos);    return x.isNeg() ? '-' + str : str;  };  /*  // Add aliases to match BigDecimal method names.  // P.add = P.plus;  P.subtract = P.minus;  P.multiply = P.times;  P.divide = P.div;  P.remainder = P.mod;  P.compareTo = P.cmp;  P.negate = P.neg;   */  // Helper functions for Decimal.prototype (P) and/or Decimal methods, and their callers.  /*   *  digitsToString           P.cubeRoot, P.logarithm, P.squareRoot, P.toFraction, P.toPower,   *                           finiteToString, naturalExponential, naturalLogarithm   *  checkInt32               P.toDecimalPlaces, P.toExponential, P.toFixed, P.toNearest,   *                           P.toPrecision, P.toSignificantDigits, toStringBinary, random   *  checkRoundingDigits      P.logarithm, P.toPower, naturalExponential, naturalLogarithm   *  convertBase              toStringBinary, parseOther   *  cos                      P.cos   *  divide                   P.atanh, P.cubeRoot, P.dividedBy, P.dividedToIntegerBy,   *                           P.logarithm, P.modulo, P.squareRoot, P.tan, P.tanh, P.toFraction,   *                           P.toNearest, toStringBinary, naturalExponential, naturalLogarithm,   *                           taylorSeries, atan2, parseOther   *  finalise                 P.absoluteValue, P.atan, P.atanh, P.ceil, P.cos, P.cosh,   *                           P.cubeRoot, P.dividedToIntegerBy, P.floor, P.logarithm, P.minus,   *                           P.modulo, P.negated, P.plus, P.round, P.sin, P.sinh, P.squareRoot,   *                           P.tan, P.times, P.toDecimalPlaces, P.toExponential, P.toFixed,   *                           P.toNearest, P.toPower, P.toPrecision, P.toSignificantDigits,   *                           P.truncated, divide, getLn10, getPi, naturalExponential,   *                           naturalLogarithm, ceil, floor, round, trunc   *  finiteToString           P.toExponential, P.toFixed, P.toPrecision, P.toString, P.valueOf,   *                           toStringBinary   *  getBase10Exponent        P.minus, P.plus, P.times, parseOther   *  getLn10                  P.logarithm, naturalLogarithm   *  getPi                    P.acos, P.asin, P.atan, toLessThanHalfPi, atan2   *  getPrecision             P.precision, P.toFraction   *  getZeroString            digitsToString, finiteToString   *  intPow                   P.toPower, parseOther   *  isOdd                    toLessThanHalfPi   *  maxOrMin                 max, min   *  naturalExponential       P.naturalExponential, P.toPower   *  naturalLogarithm         P.acosh, P.asinh, P.atanh, P.logarithm, P.naturalLogarithm,   *                           P.toPower, naturalExponential   *  nonFiniteToString        finiteToString, toStringBinary   *  parseDecimal             Decimal   *  parseOther               Decimal   *  sin                      P.sin   *  taylorSeries             P.cosh, P.sinh, cos, sin   *  toLessThanHalfPi         P.cos, P.sin   *  toStringBinary           P.toBinary, P.toHexadecimal, P.toOctal   *  truncate                 intPow   *   *  Throws:                  P.logarithm, P.precision, P.toFraction, checkInt32, getLn10, getPi,   *                           naturalLogarithm, config, parseOther, random, Decimal   */  function digitsToString(d) {    var i, k, ws,      indexOfLastWord = d.length - 1,      str = '',      w = d[0];    if (indexOfLastWord > 0) {      str += w;      for (i = 1; i < indexOfLastWord; i++) {        ws = d[i] + '';        k = LOG_BASE - ws.length;        if (k) str += getZeroString(k);        str += ws;      }      w = d[i];      ws = w + '';      k = LOG_BASE - ws.length;      if (k) str += getZeroString(k);    } else if (w === 0) {      return '0';    }    // Remove trailing zeros of last w.    for (; w % 10 === 0;) w /= 10;    return str + w;  }  function checkInt32(i, min, max) {    if (i !== ~~i || i < min || i > max) {      throw Error(invalidArgument + i);    }  }  /*   * Check 5 rounding digits if `repeating` is null, 4 otherwise.   * `repeating == null` if caller is `log` or `pow`,   * `repeating != null` if caller is `naturalLogarithm` or `naturalExponential`.   */  function checkRoundingDigits(d, i, rm, repeating) {    var di, k, r, rd;    // Get the length of the first word of the array d.    for (k = d[0]; k >= 10; k /= 10) --i;    // Is the rounding digit in the first word of d?    if (--i < 0) {      i += LOG_BASE;      di = 0;    } else {      di = Math.ceil((i + 1) / LOG_BASE);      i %= LOG_BASE;    }    // i is the index (0 - 6) of the rounding digit.    // E.g. if within the word 3487563 the first rounding digit is 5,    // then i = 4, k = 1000, rd = 3487563 % 1000 = 563    k = mathpow(10, LOG_BASE - i);    rd = d[di] % k | 0;    if (repeating == null) {      if (i < 3) {        if (i == 0) rd = rd / 100 | 0;        else if (i == 1) rd = rd / 10 | 0;        r = rm < 4 && rd == 99999 || rm > 3 && rd == 49999 || rd == 50000 || rd == 0;      } else {        r = (rm < 4 && rd + 1 == k || rm > 3 && rd + 1 == k / 2) &&          (d[di + 1] / k / 100 | 0) == mathpow(10, i - 2) - 1 ||            (rd == k / 2 || rd == 0) && (d[di + 1] / k / 100 | 0) == 0;      }    } else {      if (i < 4) {        if (i == 0) rd = rd / 1000 | 0;        else if (i == 1) rd = rd / 100 | 0;        else if (i == 2) rd = rd / 10 | 0;        r = (repeating || rm < 4) && rd == 9999 || !repeating && rm > 3 && rd == 4999;      } else {        r = ((repeating || rm < 4) && rd + 1 == k ||        (!repeating && rm > 3) && rd + 1 == k / 2) &&          (d[di + 1] / k / 1000 | 0) == mathpow(10, i - 3) - 1;      }    }    return r;  }  // Convert string of `baseIn` to an array of numbers of `baseOut`.  // Eg. convertBase('255', 10, 16) returns [15, 15].  // Eg. convertBase('ff', 16, 10) returns [2, 5, 5].  function convertBase(str, baseIn, baseOut) {    var j,      arr = [0],      arrL,      i = 0,      strL = str.length;    for (; i < strL;) {      for (arrL = arr.length; arrL--;) arr[arrL] *= baseIn;      arr[0] += NUMERALS.indexOf(str.charAt(i++));      for (j = 0; j < arr.length; j++) {        if (arr[j] > baseOut - 1) {          if (arr[j + 1] === void 0) arr[j + 1] = 0;          arr[j + 1] += arr[j] / baseOut | 0;          arr[j] %= baseOut;        }      }    }    return arr.reverse();  }  /*   * cos(x) = 1 - x^2/2! + x^4/4! - ...   * |x| < pi/2   *   */  function cosine(Ctor, x) {    var k, y,      len = x.d.length;    // Argument reduction: cos(4x) = 8*(cos^4(x) - cos^2(x)) + 1    // i.e. cos(x) = 8*(cos^4(x/4) - cos^2(x/4)) + 1    // Estimate the optimum number of times to use the argument reduction.    if (len < 32) {      k = Math.ceil(len / 3);      y = (1 / tinyPow(4, k)).toString();    } else {      k = 16;      y = '2.3283064365386962890625e-10';    }    Ctor.precision += k;    x = taylorSeries(Ctor, 1, x.times(y), new Ctor(1));    // Reverse argument reduction    for (var i = k; i--;) {      var cos2x = x.times(x);      x = cos2x.times(cos2x).minus(cos2x).times(8).plus(1);    }    Ctor.precision -= k;    return x;  }  /*   * Perform division in the specified base.   */  var divide = (function () {    // Assumes non-zero x and k, and hence non-zero result.    function multiplyInteger(x, k, base) {      var temp,        carry = 0,        i = x.length;      for (x = x.slice(); i--;) {        temp = x[i] * k + carry;        x[i] = temp % base | 0;        carry = temp / base | 0;      }      if (carry) x.unshift(carry);      return x;    }    function compare(a, b, aL, bL) {      var i, r;      if (aL != bL) {        r = aL > bL ? 1 : -1;      } else {        for (i = r = 0; i < aL; i++) {          if (a[i] != b[i]) {            r = a[i] > b[i] ? 1 : -1;            break;          }        }      }      return r;    }    function subtract(a, b, aL, base) {      var i = 0;      // Subtract b from a.      for (; aL--;) {        a[aL] -= i;        i = a[aL] < b[aL] ? 1 : 0;        a[aL] = i * base + a[aL] - b[aL];      }      // Remove leading zeros.      for (; !a[0] && a.length > 1;) a.shift();    }    return function (x, y, pr, rm, dp, base) {      var cmp, e, i, k, logBase, more, prod, prodL, q, qd, rem, remL, rem0, sd, t, xi, xL, yd0,        yL, yz,        Ctor = x.constructor,        sign = x.s == y.s ? 1 : -1,        xd = x.d,        yd = y.d;      // Either NaN, Infinity or 0?      if (!xd || !xd[0] || !yd || !yd[0]) {        return new Ctor(// Return NaN if either NaN, or both Infinity or 0.          !x.s || !y.s || (xd ? yd && xd[0] == yd[0] : !yd) ? NaN :          // Return ±0 if x is 0 or y is ±Infinity, or return ±Infinity as y is 0.          xd && xd[0] == 0 || !yd ? sign * 0 : sign / 0);      }      if (base) {        logBase = 1;        e = x.e - y.e;      } else {        base = BASE;        logBase = LOG_BASE;        e = mathfloor(x.e / logBase) - mathfloor(y.e / logBase);      }      yL = yd.length;      xL = xd.length;      q = new Ctor(sign);      qd = q.d = [];      // Result exponent may be one less than e.      // The digit array of a Decimal from toStringBinary may have trailing zeros.      for (i = 0; yd[i] == (xd[i] || 0); i++);      if (yd[i] > (xd[i] || 0)) e--;      if (pr == null) {        sd = pr = Ctor.precision;        rm = Ctor.rounding;      } else if (dp) {        sd = pr + (x.e - y.e) + 1;      } else {        sd = pr;      }      if (sd < 0) {        qd.push(1);        more = true;      } else {        // Convert precision in number of base 10 digits to base 1e7 digits.        sd = sd / logBase + 2 | 0;        i = 0;        // divisor < 1e7        if (yL == 1) {          k = 0;          yd = yd[0];          sd++;          // k is the carry.          for (; (i < xL || k) && sd--; i++) {            t = k * base + (xd[i] || 0);            qd[i] = t / yd | 0;            k = t % yd | 0;          }          more = k || i < xL;        // divisor >= 1e7        } else {          // Normalise xd and yd so highest order digit of yd is >= base/2          k = base / (yd[0] + 1) | 0;          if (k > 1) {            yd = multiplyInteger(yd, k, base);            xd = multiplyInteger(xd, k, base);            yL = yd.length;            xL = xd.length;          }          xi = yL;          rem = xd.slice(0, yL);          remL = rem.length;          // Add zeros to make remainder as long as divisor.          for (; remL < yL;) rem[remL++] = 0;          yz = yd.slice();          yz.unshift(0);          yd0 = yd[0];          if (yd[1] >= base / 2) ++yd0;          do {            k = 0;            // Compare divisor and remainder.            cmp = compare(yd, rem, yL, remL);            // If divisor < remainder.            if (cmp < 0) {              // Calculate trial digit, k.              rem0 = rem[0];              if (yL != remL) rem0 = rem0 * base + (rem[1] || 0);              // k will be how many times the divisor goes into the current remainder.              k = rem0 / yd0 | 0;              //  Algorithm:              //  1. product = divisor * trial digit (k)              //  2. if product > remainder: product -= divisor, k--              //  3. remainder -= product              //  4. if product was < remainder at 2:              //    5. compare new remainder and divisor              //    6. If remainder > divisor: remainder -= divisor, k++              if (k > 1) {                if (k >= base) k = base - 1;                // product = divisor * trial digit.                prod = multiplyInteger(yd, k, base);                prodL = prod.length;                remL = rem.length;                // Compare product and remainder.                cmp = compare(prod, rem, prodL, remL);                // product > remainder.                if (cmp == 1) {                  k--;                  // Subtract divisor from product.                  subtract(prod, yL < prodL ? yz : yd, prodL, base);                }              } else {                // cmp is -1.                // If k is 0, there is no need to compare yd and rem again below, so change cmp to 1                // to avoid it. If k is 1 there is a need to compare yd and rem again below.                if (k == 0) cmp = k = 1;                prod = yd.slice();              }              prodL = prod.length;              if (prodL < remL) prod.unshift(0);              // Subtract product from remainder.              subtract(rem, prod, remL, base);              // If product was < previous remainder.              if (cmp == -1) {                remL = rem.length;                // Compare divisor and new remainder.                cmp = compare(yd, rem, yL, remL);                // If divisor < new remainder, subtract divisor from remainder.                if (cmp < 1) {                  k++;                  // Subtract divisor from remainder.                  subtract(rem, yL < remL ? yz : yd, remL, base);                }              }              remL = rem.length;            } else if (cmp === 0) {              k++;              rem = [0];            }    // if cmp === 1, k will be 0            // Add the next digit, k, to the result array.            qd[i++] = k;            // Update the remainder.            if (cmp && rem[0]) {              rem[remL++] = xd[xi] || 0;            } else {              rem = [xd[xi]];              remL = 1;            }          } while ((xi++ < xL || rem[0] !== void 0) && sd--);          more = rem[0] !== void 0;        }        // Leading zero?        if (!qd[0]) qd.shift();      }      // logBase is 1 when divide is being used for base conversion.      if (logBase == 1) {        q.e = e;        inexact = more;      } else {        // To calculate q.e, first get the number of digits of qd[0].        for (i = 1, k = qd[0]; k >= 10; k /= 10) i++;        q.e = i + e * logBase - 1;        finalise(q, dp ? pr + q.e + 1 : pr, rm, more);      }      return q;    };  })();  /*   * Round `x` to `sd` significant digits using rounding mode `rm`.   * Check for over/under-flow.   */   function finalise(x, sd, rm, isTruncated) {    var digits, i, j, k, rd, roundUp, w, xd, xdi,      Ctor = x.constructor;    // Don't round if sd is null or undefined.    out: if (sd != null) {      xd = x.d;      // Infinity/NaN.      if (!xd) return x;      // rd: the rounding digit, i.e. the digit after the digit that may be rounded up.      // w: the word of xd containing rd, a base 1e7 number.      // xdi: the index of w within xd.      // digits: the number of digits of w.      // i: what would be the index of rd within w if all the numbers were 7 digits long (i.e. if      // they had leading zeros)      // j: if > 0, the actual index of rd within w (if < 0, rd is a leading zero).      // Get the length of the first word of the digits array xd.      for (digits = 1, k = xd[0]; k >= 10; k /= 10) digits++;      i = sd - digits;      // Is the rounding digit in the first word of xd?      if (i < 0) {        i += LOG_BASE;        j = sd;        w = xd[xdi = 0];        // Get the rounding digit at index j of w.        rd = w / mathpow(10, digits - j - 1) % 10 | 0;      } else {        xdi = Math.ceil((i + 1) / LOG_BASE);        k = xd.length;        if (xdi >= k) {          if (isTruncated) {            // Needed by `naturalExponential`, `naturalLogarithm` and `squareRoot`.            for (; k++ <= xdi;) xd.push(0);            w = rd = 0;            digits = 1;            i %= LOG_BASE;            j = i - LOG_BASE + 1;          } else {            break out;          }        } else {          w = k = xd[xdi];          // Get the number of digits of w.          for (digits = 1; k >= 10; k /= 10) digits++;          // Get the index of rd within w.          i %= LOG_BASE;          // Get the index of rd within w, adjusted for leading zeros.          // The number of leading zeros of w is given by LOG_BASE - digits.          j = i - LOG_BASE + digits;          // Get the rounding digit at index j of w.          rd = j < 0 ? 0 : w / mathpow(10, digits - j - 1) % 10 | 0;        }      }      // Are there any non-zero digits after the rounding digit?      isTruncated = isTruncated || sd < 0 ||        xd[xdi + 1] !== void 0 || (j < 0 ? w : w % mathpow(10, digits - j - 1));      // The expression `w % mathpow(10, digits - j - 1)` returns all the digits of w to the right      // of the digit at (left-to-right) index j, e.g. if w is 908714 and j is 2, the expression      // will give 714.      roundUp = rm < 4        ? (rd || isTruncated) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))        : rd > 5 || rd == 5 && (rm == 4 || isTruncated || rm == 6 &&          // Check whether the digit to the left of the rounding digit is odd.          ((i > 0 ? j > 0 ? w / mathpow(10, digits - j) : 0 : xd[xdi - 1]) % 10) & 1 ||            rm == (x.s < 0 ? 8 : 7));      if (sd < 1 || !xd[0]) {        xd.length = 0;        if (roundUp) {          // Convert sd to decimal places.          sd -= x.e + 1;          // 1, 0.1, 0.01, 0.001, 0.0001 etc.          xd[0] = mathpow(10, (LOG_BASE - sd % LOG_BASE) % LOG_BASE);          x.e = -sd || 0;        } else {          // Zero.          xd[0] = x.e = 0;        }        return x;      }      // Remove excess digits.      if (i == 0) {        xd.length = xdi;        k = 1;        xdi--;      } else {        xd.length = xdi + 1;        k = mathpow(10, LOG_BASE - i);        // E.g. 56700 becomes 56000 if 7 is the rounding digit.        // j > 0 means i > number of leading zeros of w.        xd[xdi] = j > 0 ? (w / mathpow(10, digits - j) % mathpow(10, j) | 0) * k : 0;      }      if (roundUp) {        for (;;) {          // Is the digit to be rounded up in the first word of xd?          if (xdi == 0) {            // i will be the length of xd[0] before k is added.            for (i = 1, j = xd[0]; j >= 10; j /= 10) i++;            j = xd[0] += k;            for (k = 1; j >= 10; j /= 10) k++;            // if i != k the length has increased.            if (i != k) {              x.e++;              if (xd[0] == BASE) xd[0] = 1;            }            break;          } else {            xd[xdi] += k;            if (xd[xdi] != BASE) break;            xd[xdi--] = 0;            k = 1;          }        }      }      // Remove trailing zeros.      for (i = xd.length; xd[--i] === 0;) xd.pop();    }    if (external) {      // Overflow?      if (x.e > Ctor.maxE) {        // Infinity.        x.d = null;        x.e = NaN;      // Underflow?      } else if (x.e < Ctor.minE) {        // Zero.        x.e = 0;        x.d = [0];        // Ctor.underflow = true;      } // else Ctor.underflow = false;    }    return x;  }  function finiteToString(x, isExp, sd) {    if (!x.isFinite()) return nonFiniteToString(x);    var k,      e = x.e,      str = digitsToString(x.d),      len = str.length;    if (isExp) {      if (sd && (k = sd - len) > 0) {        str = str.charAt(0) + '.' + str.slice(1) + getZeroString(k);      } else if (len > 1) {        str = str.charAt(0) + '.' + str.slice(1);      }      str = str + (x.e < 0 ? 'e' : 'e+') + x.e;    } else if (e < 0) {      str = '0.' + getZeroString(-e - 1) + str;      if (sd && (k = sd - len) > 0) str += getZeroString(k);    } else if (e >= len) {      str += getZeroString(e + 1 - len);      if (sd && (k = sd - e - 1) > 0) str = str + '.' + getZeroString(k);    } else {      if ((k = e + 1) < len) str = str.slice(0, k) + '.' + str.slice(k);      if (sd && (k = sd - len) > 0) {        if (e + 1 === len) str += '.';        str += getZeroString(k);      }    }    return str;  }  // Calculate the base 10 exponent from the base 1e7 exponent.  function getBase10Exponent(digits, e) {    var w = digits[0];    // Add the number of digits of the first word of the digits array.    for ( e *= LOG_BASE; w >= 10; w /= 10) e++;    return e;  }  function getLn10(Ctor, sd, pr) {    if (sd > LN10_PRECISION) {      // Reset global state in case the exception is caught.      external = true;      if (pr) Ctor.precision = pr;      throw Error(precisionLimitExceeded);    }    return finalise(new Ctor(LN10), sd, 1, true);  }  function getPi(Ctor, sd, rm) {    if (sd > PI_PRECISION) throw Error(precisionLimitExceeded);    return finalise(new Ctor(PI), sd, rm, true);  }  function getPrecision(digits) {    var w = digits.length - 1,      len = w * LOG_BASE + 1;    w = digits[w];    // If non-zero...    if (w) {      // Subtract the number of trailing zeros of the last word.      for (; w % 10 == 0; w /= 10) len--;      // Add the number of digits of the first word.      for (w = digits[0]; w >= 10; w /= 10) len++;    }    return len;  }  function getZeroString(k) {    var zs = '';    for (; k--;) zs += '0';    return zs;  }  /*   * Return a new Decimal whose value is the value of Decimal `x` to the power `n`, where `n` is an   * integer of type number.   *   * Implements 'exponentiation by squaring'. Called by `pow` and `parseOther`.   *   */  function intPow(Ctor, x, n, pr) {    var isTruncated,      r = new Ctor(1),      // Max n of 9007199254740991 takes 53 loop iterations.      // Maximum digits array length; leaves [28, 34] guard digits.      k = Math.ceil(pr / LOG_BASE + 4);    external = false;    for (;;) {      if (n % 2) {        r = r.times(x);        if (truncate(r.d, k)) isTruncated = true;      }      n = mathfloor(n / 2);      if (n === 0) {        // To ensure correct rounding when r.d is truncated, increment the last word if it is zero.        n = r.d.length - 1;        if (isTruncated && r.d[n] === 0) ++r.d[n];        break;      }      x = x.times(x);      truncate(x.d, k);    }    external = true;    return r;  }  function isOdd(n) {    return n.d[n.d.length - 1] & 1;  }  /*   * Handle `max` and `min`. `ltgt` is 'lt' or 'gt'.   */  function maxOrMin(Ctor, args, ltgt) {    var y,      x = new Ctor(args[0]),      i = 0;    for (; ++i < args.length;) {      y = new Ctor(args[i]);      if (!y.s) {        x = y;        break;      } else if (x[ltgt](y)) {        x = y;      }    }    return x;  }  /*   * Return a new Decimal whose value is the natural exponential of `x` rounded to `sd` significant   * digits.   *   * Taylor/Maclaurin series.   *   * exp(x) = x^0/0! + x^1/1! + x^2/2! + x^3/3! + ...   *   * Argument reduction:   *   Repeat x = x / 32, k += 5, until |x| < 0.1   *   exp(x) = exp(x / 2^k)^(2^k)   *   * Previously, the argument was initially reduced by   * exp(x) = exp(r) * 10^k  where r = x - k * ln10, k = floor(x / ln10)   * to first put r in the range [0, ln10], before dividing by 32 until |x| < 0.1, but this was   * found to be slower than just dividing repeatedly by 32 as above.   *   * Max integer argument: exp('20723265836946413') = 6.3e+9000000000000000   * Min integer argument: exp('-20723265836946411') = 1.2e-9000000000000000   * (Math object integer min/max: Math.exp(709) = 8.2e+307, Math.exp(-745) = 5e-324)   *   *  exp(Infinity)  = Infinity   *  exp(-Infinity) = 0   *  exp(NaN)       = NaN   *  exp(±0)        = 1   *   *  exp(x) is non-terminating for any finite, non-zero x.   *   *  The result will always be correctly rounded.   *   */  function naturalExponential(x, sd) {    var denominator, guard, j, pow, sum, t, wpr,      rep = 0,      i = 0,      k = 0,      Ctor = x.constructor,      rm = Ctor.rounding,      pr = Ctor.precision;    // 0/NaN/Infinity?    if (!x.d || !x.d[0] || x.e > 17) {      return new Ctor(x.d        ? !x.d[0] ? 1 : x.s < 0 ? 0 : 1 / 0        : x.s ? x.s < 0 ? 0 : x : 0 / 0);    }    if (sd == null) {      external = false;      wpr = pr;    } else {      wpr = sd;    }    t = new Ctor(0.03125);    // while abs(x) >= 0.1    while (x.e > -2) {      // x = x / 2^5      x = x.times(t);      k += 5;    }    // Use 2 * log10(2^k) + 5 (empirically derived) to estimate the increase in precision    // necessary to ensure the first 4 rounding digits are correct.    guard = Math.log(mathpow(2, k)) / Math.LN10 * 2 + 5 | 0;    wpr += guard;    denominator = pow = sum = new Ctor(1);    Ctor.precision = wpr;    for (;;) {      pow = finalise(pow.times(x), wpr, 1);      denominator = denominator.times(++i);      t = sum.plus(divide(pow, denominator, wpr, 1));      if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) {        j = k;        while (j--) sum = finalise(sum.times(sum), wpr, 1);        // Check to see if the first 4 rounding digits are [49]999.        // If so, repeat the summation with a higher precision, otherwise        // e.g. with precision: 18, rounding: 1        // exp(18.404272462595034083567793919843761) = 98372560.1229999999 (should be 98372560.123)        // `wpr - guard` is the index of first rounding digit.        if (sd == null) {          if (rep < 3 && checkRoundingDigits(sum.d, wpr - guard, rm, rep)) {            Ctor.precision = wpr += 10;            denominator = pow = t = new Ctor(1);            i = 0;            rep++;          } else {            return finalise(sum, Ctor.precision = pr, rm, external = true);          }        } else {          Ctor.precision = pr;          return sum;        }      }      sum = t;    }  }  /*   * Return a new Decimal whose value is the natural logarithm of `x` rounded to `sd` significant   * digits.   *   *  ln(-n)        = NaN   *  ln(0)         = -Infinity   *  ln(-0)        = -Infinity   *  ln(1)         = 0   *  ln(Infinity)  = Infinity   *  ln(-Infinity) = NaN   *  ln(NaN)       = NaN   *   *  ln(n) (n != 1) is non-terminating.   *   */  function naturalLogarithm(y, sd) {    var c, c0, denominator, e, numerator, rep, sum, t, wpr, x1, x2,      n = 1,      guard = 10,      x = y,      xd = x.d,      Ctor = x.constructor,      rm = Ctor.rounding,      pr = Ctor.precision;    // Is x negative or Infinity, NaN, 0 or 1?    if (x.s < 0 || !xd || !xd[0] || !x.e && xd[0] == 1 && xd.length == 1) {      return new Ctor(xd && !xd[0] ? -1 / 0 : x.s != 1 ? NaN : xd ? 0 : x);    }    if (sd == null) {      external = false;      wpr = pr;    } else {      wpr = sd;    }    Ctor.precision = wpr += guard;    c = digitsToString(xd);    c0 = c.charAt(0);    if (Math.abs(e = x.e) < 1.5e15) {      // Argument reduction.      // The series converges faster the closer the argument is to 1, so using      // ln(a^b) = b * ln(a),   ln(a) = ln(a^b) / b      // multiply the argument by itself until the leading digits of the significand are 7, 8, 9,      // 10, 11, 12 or 13, recording the number of multiplications so the sum of the series can      // later be divided by this number, then separate out the power of 10 using      // ln(a*10^b) = ln(a) + b*ln(10).      // max n is 21 (gives 0.9, 1.0 or 1.1) (9e15 / 21 = 4.2e14).      //while (c0 < 9 && c0 != 1 || c0 == 1 && c.charAt(1) > 1) {      // max n is 6 (gives 0.7 - 1.3)      while (c0 < 7 && c0 != 1 || c0 == 1 && c.charAt(1) > 3) {        x = x.times(y);        c = digitsToString(x.d);        c0 = c.charAt(0);        n++;      }      e = x.e;      if (c0 > 1) {        x = new Ctor('0.' + c);        e++;      } else {        x = new Ctor(c0 + '.' + c.slice(1));      }    } else {      // The argument reduction method above may result in overflow if the argument y is a massive      // number with exponent >= 1500000000000000 (9e15 / 6 = 1.5e15), so instead recall this      // function using ln(x*10^e) = ln(x) + e*ln(10).      t = getLn10(Ctor, wpr + 2, pr).times(e + '');      x = naturalLogarithm(new Ctor(c0 + '.' + c.slice(1)), wpr - guard).plus(t);      Ctor.precision = pr;      return sd == null ? finalise(x, pr, rm, external = true) : x;    }    // x1 is x reduced to a value near 1.    x1 = x;    // Taylor series.    // ln(y) = ln((1 + x)/(1 - x)) = 2(x + x^3/3 + x^5/5 + x^7/7 + ...)    // where x = (y - 1)/(y + 1)    (|x| < 1)    sum = numerator = x = divide(x.minus(1), x.plus(1), wpr, 1);    x2 = finalise(x.times(x), wpr, 1);    denominator = 3;    for (;;) {      numerator = finalise(numerator.times(x2), wpr, 1);      t = sum.plus(divide(numerator, new Ctor(denominator), wpr, 1));      if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) {        sum = sum.times(2);        // Reverse the argument reduction. Check that e is not 0 because, besides preventing an        // unnecessary calculation, -0 + 0 = +0 and to ensure correct rounding -0 needs to stay -0.        if (e !== 0) sum = sum.plus(getLn10(Ctor, wpr + 2, pr).times(e + ''));        sum = divide(sum, new Ctor(n), wpr, 1);        // Is rm > 3 and the first 4 rounding digits 4999, or rm < 4 (or the summation has        // been repeated previously) and the first 4 rounding digits 9999?        // If so, restart the summation with a higher precision, otherwise        // e.g. with precision: 12, rounding: 1        // ln(135520028.6126091714265381533) = 18.7246299999 when it should be 18.72463.        // `wpr - guard` is the index of first rounding digit.        if (sd == null) {          if (checkRoundingDigits(sum.d, wpr - guard, rm, rep)) {            Ctor.precision = wpr += guard;            t = numerator = x = divide(x1.minus(1), x1.plus(1), wpr, 1);            x2 = finalise(x.times(x), wpr, 1);            denominator = rep = 1;          } else {            return finalise(sum, Ctor.precision = pr, rm, external = true);          }        } else {          Ctor.precision = pr;          return sum;        }      }      sum = t;      denominator += 2;    }  }  // ±Infinity, NaN.  function nonFiniteToString(x) {    // Unsigned.    return String(x.s * x.s / 0);  }  /*   * Parse the value of a new Decimal `x` from string `str`.   */  function parseDecimal(x, str) {    var e, i, len;    // Decimal point?    if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');    // Exponential form?    if ((i = str.search(/e/i)) > 0) {      // Determine exponent.      if (e < 0) e = i;      e += +str.slice(i + 1);      str = str.substring(0, i);    } else if (e < 0) {      // Integer.      e = str.length;    }    // Determine leading zeros.    for (i = 0; str.charCodeAt(i) === 48; i++);    // Determine trailing zeros.    for (len = str.length; str.charCodeAt(len - 1) === 48; --len);    str = str.slice(i, len);    if (str) {      len -= i;      x.e = e = e - i - 1;      x.d = [];      // Transform base      // e is the base 10 exponent.      // i is where to slice str to get the first word of the digits array.      i = (e + 1) % LOG_BASE;      if (e < 0) i += LOG_BASE;      if (i < len) {        if (i) x.d.push(+str.slice(0, i));        for (len -= LOG_BASE; i < len;) x.d.push(+str.slice(i, i += LOG_BASE));        str = str.slice(i);        i = LOG_BASE - str.length;      } else {        i -= len;      }      for (; i--;) str += '0';      x.d.push(+str);      if (external) {        // Overflow?        if (x.e > x.constructor.maxE) {          // Infinity.          x.d = null;          x.e = NaN;        // Underflow?        } else if (x.e < x.constructor.minE) {          // Zero.          x.e = 0;          x.d = [0];          // x.constructor.underflow = true;        } // else x.constructor.underflow = false;      }    } else {      // Zero.      x.e = 0;      x.d = [0];    }    return x;  }  /*   * Parse the value of a new Decimal `x` from a string `str`, which is not a decimal value.   */  function parseOther(x, str) {    var base, Ctor, divisor, i, isFloat, len, p, xd, xe;    if (str === 'Infinity' || str === 'NaN') {      if (!+str) x.s = NaN;      x.e = NaN;      x.d = null;      return x;    }    if (isHex.test(str))  {      base = 16;      str = str.toLowerCase();    } else if (isBinary.test(str))  {      base = 2;    } else if (isOctal.test(str))  {      base = 8;    } else {      throw Error(invalidArgument + str);    }    // Is there a binary exponent part?    i = str.search(/p/i);    if (i > 0) {      p = +str.slice(i + 1);      str = str.substring(2, i);    } else {      str = str.slice(2);    }    // Convert `str` as an integer then divide the result by `base` raised to a power such that the    // fraction part will be restored.    i = str.indexOf('.');    isFloat = i >= 0;    Ctor = x.constructor;    if (isFloat) {      str = str.replace('.', '');      len = str.length;      i = len - i;      // log[10](16) = 1.2041... , log[10](88) = 1.9444....      divisor = intPow(Ctor, new Ctor(base), i, i * 2);    }    xd = convertBase(str, base, BASE);    xe = xd.length - 1;    // Remove trailing zeros.    for (i = xe; xd[i] === 0; --i) xd.pop();    if (i < 0) return new Ctor(x.s * 0);    x.e = getBase10Exponent(xd, xe);    x.d = xd;    external = false;    // At what precision to perform the division to ensure exact conversion?    // maxDecimalIntegerPartDigitCount = ceil(log[10](b) * otherBaseIntegerPartDigitCount)    // log[10](2) = 0.30103, log[10](8) = 0.90309, log[10](16) = 1.20412    // E.g. ceil(1.2 * 3) = 4, so up to 4 decimal digits are needed to represent 3 hex int digits.    // maxDecimalFractionPartDigitCount = {Hex:4|Oct:3|Bin:1} * otherBaseFractionPartDigitCount    // Therefore using 4 * the number of digits of str will always be enough.    if (isFloat) x = divide(x, divisor, len * 4);    // Multiply by the binary exponent part if present.    if (p) x = x.times(Math.abs(p) < 54 ? mathpow(2, p) : Decimal.pow(2, p));    external = true;    return x;  }  /*   * sin(x) = x - x^3/3! + x^5/5! - ...   * |x| < pi/2   *   */  function sine(Ctor, x) {    var k,      len = x.d.length;    if (len < 3) return taylorSeries(Ctor, 2, x, x);    // Argument reduction: sin(5x) = 16*sin^5(x) - 20*sin^3(x) + 5*sin(x)    // i.e. sin(x) = 16*sin^5(x/5) - 20*sin^3(x/5) + 5*sin(x/5)    // and  sin(x) = sin(x/5)(5 + sin^2(x/5)(16sin^2(x/5) - 20))    // Estimate the optimum number of times to use the argument reduction.    k = 1.4 * Math.sqrt(len);    k = k > 16 ? 16 : k | 0;    x = x.times(1 / tinyPow(5, k));    x = taylorSeries(Ctor, 2, x, x);    // Reverse argument reduction    var sin2_x,      d5 = new Ctor(5),      d16 = new Ctor(16),      d20 = new Ctor(20);    for (; k--;) {      sin2_x = x.times(x);      x = x.times(d5.plus(sin2_x.times(d16.times(sin2_x).minus(d20))));    }    return x;  }  // Calculate Taylor series for `cos`, `cosh`, `sin` and `sinh`.  function taylorSeries(Ctor, n, x, y, isHyperbolic) {    var j, t, u, x2,      i = 1,      pr = Ctor.precision,      k = Math.ceil(pr / LOG_BASE);    external = false;    x2 = x.times(x);    u = new Ctor(y);    for (;;) {      t = divide(u.times(x2), new Ctor(n++ * n++), pr, 1);      u = isHyperbolic ? y.plus(t) : y.minus(t);      y = divide(t.times(x2), new Ctor(n++ * n++), pr, 1);      t = u.plus(y);      if (t.d[k] !== void 0) {        for (j = k; t.d[j] === u.d[j] && j--;);        if (j == -1) break;      }      j = u;      u = y;      y = t;      t = j;      i++;    }    external = true;    t.d.length = k + 1;    return t;  }  // Exponent e must be positive and non-zero.  function tinyPow(b, e) {    var n = b;    while (--e) n *= b;    return n;  }  // Return the absolute value of `x` reduced to less than or equal to half pi.  function toLessThanHalfPi(Ctor, x) {    var t,      isNeg = x.s < 0,      pi = getPi(Ctor, Ctor.precision, 1),      halfPi = pi.times(0.5);    x = x.abs();    if (x.lte(halfPi)) {      quadrant = isNeg ? 4 : 1;      return x;    }    t = x.divToInt(pi);    if (t.isZero()) {      quadrant = isNeg ? 3 : 2;    } else {      x = x.minus(t.times(pi));      // 0 <= x < pi      if (x.lte(halfPi)) {        quadrant = isOdd(t) ? (isNeg ? 2 : 3) : (isNeg ? 4 : 1);        return x;      }      quadrant = isOdd(t) ? (isNeg ? 1 : 4) : (isNeg ? 3 : 2);    }    return x.minus(pi).abs();  }  /*   * Return the value of Decimal `x` as a string in base `baseOut`.   *   * If the optional `sd` argument is present include a binary exponent suffix.   */  function toStringBinary(x, baseOut, sd, rm) {    var base, e, i, k, len, roundUp, str, xd, y,      Ctor = x.constructor,      isExp = sd !== void 0;    if (isExp) {      checkInt32(sd, 1, MAX_DIGITS);      if (rm === void 0) rm = Ctor.rounding;      else checkInt32(rm, 0, 8);    } else {      sd = Ctor.precision;      rm = Ctor.rounding;    }    if (!x.isFinite()) {      str = nonFiniteToString(x);    } else {      str = finiteToString(x);      i = str.indexOf('.');      // Use exponential notation according to `toExpPos` and `toExpNeg`? No, but if required:      // maxBinaryExponent = floor((decimalExponent + 1) * log[2](10))      // minBinaryExponent = floor(decimalExponent * log[2](10))      // log[2](10) = 3.321928094887362347870319429489390175864      if (isExp) {        base = 2;        if (baseOut == 16) {          sd = sd * 4 - 3;        } else if (baseOut == 8) {          sd = sd * 3 - 2;        }      } else {        base = baseOut;      }      // Convert the number as an integer then divide the result by its base raised to a power such      // that the fraction part will be restored.      // Non-integer.      if (i >= 0) {        str = str.replace('.', '');        y = new Ctor(1);        y.e = str.length - i;        y.d = convertBase(finiteToString(y), 10, base);        y.e = y.d.length;      }      xd = convertBase(str, 10, base);      e = len = xd.length;      // Remove trailing zeros.      for (; xd[--len] == 0;) xd.pop();      if (!xd[0]) {        str = isExp ? '0p+0' : '0';      } else {        if (i < 0) {          e--;        } else {          x = new Ctor(x);          x.d = xd;          x.e = e;          x = divide(x, y, sd, rm, 0, base);          xd = x.d;          e = x.e;          roundUp = inexact;        }        // The rounding digit, i.e. the digit after the digit that may be rounded up.        i = xd[sd];        k = base / 2;        roundUp = roundUp || xd[sd + 1] !== void 0;        roundUp = rm < 4          ? (i !== void 0 || roundUp) && (rm === 0 || rm === (x.s < 0 ? 3 : 2))          : i > k || i === k && (rm === 4 || roundUp || rm === 6 && xd[sd - 1] & 1 ||            rm === (x.s < 0 ? 8 : 7));        xd.length = sd;        if (roundUp) {          // Rounding up may mean the previous digit has to be rounded up and so on.          for (; ++xd[--sd] > base - 1;) {            xd[sd] = 0;            if (!sd) {              ++e;              xd.unshift(1);            }          }        }        // Determine trailing zeros.        for (len = xd.length; !xd[len - 1]; --len);        // E.g. [4, 11, 15] becomes 4bf.        for (i = 0, str = ''; i < len; i++) str += NUMERALS.charAt(xd[i]);        // Add binary exponent suffix?        if (isExp) {          if (len > 1) {            if (baseOut == 16 || baseOut == 8) {              i = baseOut == 16 ? 4 : 3;              for (--len; len % i; len++) str += '0';              xd = convertBase(str, base, baseOut);              for (len = xd.length; !xd[len - 1]; --len);              // xd[0] will always be be 1              for (i = 1, str = '1.'; i < len; i++) str += NUMERALS.charAt(xd[i]);            } else {              str = str.charAt(0) + '.' + str.slice(1);            }          }          str =  str + (e < 0 ? 'p' : 'p+') + e;        } else if (e < 0) {          for (; ++e;) str = '0' + str;          str = '0.' + str;        } else {          if (++e > len) for (e -= len; e-- ;) str += '0';          else if (e < len) str = str.slice(0, e) + '.' + str.slice(e);        }      }      str = (baseOut == 16 ? '0x' : baseOut == 2 ? '0b' : baseOut == 8 ? '0o' : '') + str;    }    return x.s < 0 ? '-' + str : str;  }  // Does not strip trailing zeros.  function truncate(arr, len) {    if (arr.length > len) {      arr.length = len;      return true;    }  }  // Decimal methods  /*   *  abs   *  acos   *  acosh   *  add   *  asin   *  asinh   *  atan   *  atanh   *  atan2   *  cbrt   *  ceil   *  clone   *  config   *  cos   *  cosh   *  div   *  exp   *  floor   *  hypot   *  ln   *  log   *  log2   *  log10   *  max   *  min   *  mod   *  mul   *  pow   *  random   *  round   *  set   *  sign   *  sin   *  sinh   *  sqrt   *  sub   *  tan   *  tanh   *  trunc   */  /*   * Return a new Decimal whose value is the absolute value of `x`.   *   * x {number|string|Decimal}   *   */  function abs(x) {    return new this(x).abs();  }  /*   * Return a new Decimal whose value is the arccosine in radians of `x`.   *   * x {number|string|Decimal}   *   */  function acos(x) {    return new this(x).acos();  }  /*   * Return a new Decimal whose value is the inverse of the hyperbolic cosine of `x`, rounded to   * `precision` significant digits using rounding mode `rounding`.   *   * x {number|string|Decimal} A value in radians.   *   */  function acosh(x) {    return new this(x).acosh();  }  /*   * Return a new Decimal whose value is the sum of `x` and `y`, rounded to `precision` significant   * digits using rounding mode `rounding`.   *   * x {number|string|Decimal}   * y {number|string|Decimal}   *   */  function add(x, y) {    return new this(x).plus(y);  }  /*   * Return a new Decimal whose value is the arcsine in radians of `x`, rounded to `precision`   * significant digits using rounding mode `rounding`.   *   * x {number|string|Decimal}   *   */  function asin(x) {    return new this(x).asin();  }  /*   * Return a new Decimal whose value is the inverse of the hyperbolic sine of `x`, rounded to   * `precision` significant digits using rounding mode `rounding`.   *   * x {number|string|Decimal} A value in radians.   *   */  function asinh(x) {    return new this(x).asinh();  }  /*   * Return a new Decimal whose value is the arctangent in radians of `x`, rounded to `precision`   * significant digits using rounding mode `rounding`.   *   * x {number|string|Decimal}   *   */  function atan(x) {    return new this(x).atan();  }  /*   * Return a new Decimal whose value is the inverse of the hyperbolic tangent of `x`, rounded to   * `precision` significant digits using rounding mode `rounding`.   *   * x {number|string|Decimal} A value in radians.   *   */  function atanh(x) {    return new this(x).atanh();  }  /*   * Return a new Decimal whose value is the arctangent in radians of `y/x` in the range -pi to pi   * (inclusive), rounded to `precision` significant digits using rounding mode `rounding`.   *   * Domain: [-Infinity, Infinity]   * Range: [-pi, pi]   *   * y {number|string|Decimal} The y-coordinate.   * x {number|string|Decimal} The x-coordinate.   *   * atan2(±0, -0)               = ±pi   * atan2(±0, +0)               = ±0   * atan2(±0, -x)               = ±pi for x > 0   * atan2(±0, x)                = ±0 for x > 0   * atan2(-y, ±0)               = -pi/2 for y > 0   * atan2(y, ±0)                = pi/2 for y > 0   * atan2(±y, -Infinity)        = ±pi for finite y > 0   * atan2(±y, +Infinity)        = ±0 for finite y > 0   * atan2(±Infinity, x)         = ±pi/2 for finite x   * atan2(±Infinity, -Infinity) = ±3*pi/4   * atan2(±Infinity, +Infinity) = ±pi/4   * atan2(NaN, x) = NaN   * atan2(y, NaN) = NaN   *   */  function atan2(y, x) {    y = new this(y);    x = new this(x);    var r,      pr = this.precision,      rm = this.rounding,      wpr = pr + 4;    // Either NaN    if (!y.s || !x.s) {      r = new this(NaN);    // Both ±Infinity    } else if (!y.d && !x.d) {      r = getPi(this, wpr, 1).times(x.s > 0 ? 0.25 : 0.75);      r.s = y.s;    // x is ±Infinity or y is ±0    } else if (!x.d || y.isZero()) {      r = x.s < 0 ? getPi(this, pr, rm) : new this(0);      r.s = y.s;    // y is ±Infinity or x is ±0    } else if (!y.d || x.isZero()) {      r = getPi(this, wpr, 1).times(0.5);      r.s = y.s;    // Both non-zero and finite    } else if (x.s < 0) {      this.precision = wpr;      this.rounding = 1;      r = this.atan(divide(y, x, wpr, 1));      x = getPi(this, wpr, 1);      this.precision = pr;      this.rounding = rm;      r = y.s < 0 ? r.minus(x) : r.plus(x);    } else {      r = this.atan(divide(y, x, wpr, 1));    }    return r;  }  /*   * Return a new Decimal whose value is the cube root of `x`, rounded to `precision` significant   * digits using rounding mode `rounding`.   *   * x {number|string|Decimal}   *   */  function cbrt(x) {    return new this(x).cbrt();  }  /*   * Return a new Decimal whose value is `x` rounded to an integer using `ROUND_CEIL`.   *   * x {number|string|Decimal}   *   */  function ceil(x) {    return finalise(x = new this(x), x.e + 1, 2);  }  /*   * Configure global settings for a Decimal constructor.   *   * `obj` is an object with one or more of the following properties,   *   *   precision  {number}   *   rounding   {number}   *   toExpNeg   {number}   *   toExpPos   {number}   *   maxE       {number}   *   minE       {number}   *   modulo     {number}   *   crypto     {boolean|number}   *   defaults   {true}   *   * E.g. Decimal.config({ precision: 20, rounding: 4 })   *   */  function config(obj) {    if (!obj || typeof obj !== 'object') throw Error(decimalError + 'Object expected');    var i, p, v,      useDefaults = obj.defaults === true,      ps = [        'precision', 1, MAX_DIGITS,        'rounding', 0, 8,        'toExpNeg', -EXP_LIMIT, 0,        'toExpPos', 0, EXP_LIMIT,        'maxE', 0, EXP_LIMIT,        'minE', -EXP_LIMIT, 0,        'modulo', 0, 9      ];    for (i = 0; i < ps.length; i += 3) {      if (p = ps[i], useDefaults) this[p] = DEFAULTS[p];      if ((v = obj[p]) !== void 0) {        if (mathfloor(v) === v && v >= ps[i + 1] && v <= ps[i + 2]) this[p] = v;        else throw Error(invalidArgument + p + ': ' + v);      }    }    if (p = 'crypto', useDefaults) this[p] = DEFAULTS[p];    if ((v = obj[p]) !== void 0) {      if (v === true || v === false || v === 0 || v === 1) {        if (v) {          if (typeof crypto != 'undefined' && crypto &&            (crypto.getRandomValues || crypto.randomBytes)) {            this[p] = true;          } else {            throw Error(cryptoUnavailable);          }        } else {          this[p] = false;        }      } else {        throw Error(invalidArgument + p + ': ' + v);      }    }    return this;  }  /*   * Return a new Decimal whose value is the cosine of `x`, rounded to `precision` significant   * digits using rounding mode `rounding`.   *   * x {number|string|Decimal} A value in radians.   *   */  function cos(x) {    return new this(x).cos();  }  /*   * Return a new Decimal whose value is the hyperbolic cosine of `x`, rounded to precision   * significant digits using rounding mode `rounding`.   *   * x {number|string|Decimal} A value in radians.   *   */  function cosh(x) {    return new this(x).cosh();  }  /*   * Create and return a Decimal constructor with the same configuration properties as this Decimal   * constructor.   *   */  function clone(obj) {    var i, p, ps;    /*     * The Decimal constructor and exported function.     * Return a new Decimal instance.     *     * v {number|string|Decimal} A numeric value.     *     */    function Decimal(v) {      var e, i, t,        x = this;      // Decimal called without new.      if (!(x instanceof Decimal)) return new Decimal(v);      // Retain a reference to this Decimal constructor, and shadow Decimal.prototype.constructor      // which points to Object.      x.constructor = Decimal;      // Duplicate.      if (v instanceof Decimal) {        x.s = v.s;        if (external) {          if (!v.d || v.e > Decimal.maxE) {            // Infinity.            x.e = NaN;            x.d = null;          } else if (v.e < Decimal.minE) {            // Zero.            x.e = 0;            x.d = [0];          } else {            x.e = v.e;            x.d = v.d.slice();          }        } else {          x.e = v.e;          x.d = v.d ? v.d.slice() : v.d;        }        return;      }      t = typeof v;      if (t === 'number') {        if (v === 0) {          x.s = 1 / v < 0 ? -1 : 1;          x.e = 0;          x.d = [0];          return;        }        if (v < 0) {          v = -v;          x.s = -1;        } else {          x.s = 1;        }        // Fast path for small integers.        if (v === ~~v && v < 1e7) {          for (e = 0, i = v; i >= 10; i /= 10) e++;          if (external) {            if (e > Decimal.maxE) {              x.e = NaN;              x.d = null;            } else if (e < Decimal.minE) {              x.e = 0;              x.d = [0];            } else {              x.e = e;              x.d = [v];            }          } else {            x.e = e;            x.d = [v];          }          return;        // Infinity, NaN.        } else if (v * 0 !== 0) {          if (!v) x.s = NaN;          x.e = NaN;          x.d = null;          return;        }        return parseDecimal(x, v.toString());      } else if (t !== 'string') {        throw Error(invalidArgument + v);      }      // Minus sign?      if ((i = v.charCodeAt(0)) === 45) {        v = v.slice(1);        x.s = -1;      } else {        // Plus sign?        if (i === 43) v = v.slice(1);        x.s = 1;      }      return isDecimal.test(v) ? parseDecimal(x, v) : parseOther(x, v);    }    Decimal.prototype = P;    Decimal.ROUND_UP = 0;    Decimal.ROUND_DOWN = 1;    Decimal.ROUND_CEIL = 2;    Decimal.ROUND_FLOOR = 3;    Decimal.ROUND_HALF_UP = 4;    Decimal.ROUND_HALF_DOWN = 5;    Decimal.ROUND_HALF_EVEN = 6;    Decimal.ROUND_HALF_CEIL = 7;    Decimal.ROUND_HALF_FLOOR = 8;    Decimal.EUCLID = 9;    Decimal.config = Decimal.set = config;    Decimal.clone = clone;    Decimal.isDecimal = isDecimalInstance;    Decimal.abs = abs;    Decimal.acos = acos;    Decimal.acosh = acosh;        // ES6    Decimal.add = add;    Decimal.asin = asin;    Decimal.asinh = asinh;        // ES6    Decimal.atan = atan;    Decimal.atanh = atanh;        // ES6    Decimal.atan2 = atan2;    Decimal.cbrt = cbrt;          // ES6    Decimal.ceil = ceil;    Decimal.cos = cos;    Decimal.cosh = cosh;          // ES6    Decimal.div = div;    Decimal.exp = exp;    Decimal.floor = floor;    Decimal.hypot = hypot;        // ES6    Decimal.ln = ln;    Decimal.log = log;    Decimal.log10 = log10;        // ES6    Decimal.log2 = log2;          // ES6    Decimal.max = max;    Decimal.min = min;    Decimal.mod = mod;    Decimal.mul = mul;    Decimal.pow = pow;    Decimal.random = random;    Decimal.round = round;    Decimal.sign = sign;          // ES6    Decimal.sin = sin;    Decimal.sinh = sinh;          // ES6    Decimal.sqrt = sqrt;    Decimal.sub = sub;    Decimal.tan = tan;    Decimal.tanh = tanh;          // ES6    Decimal.trunc = trunc;        // ES6    if (obj === void 0) obj = {};    if (obj) {      if (obj.defaults !== true) {        ps = ['precision', 'rounding', 'toExpNeg', 'toExpPos', 'maxE', 'minE', 'modulo', 'crypto'];        for (i = 0; i < ps.length;) if (!obj.hasOwnProperty(p = ps[i++])) obj[p] = this[p];      }    }    Decimal.config(obj);    return Decimal;  }  /*   * Return a new Decimal whose value is `x` divided by `y`, rounded to `precision` significant   * digits using rounding mode `rounding`.   *   * x {number|string|Decimal}   * y {number|string|Decimal}   *   */  function div(x, y) {    return new this(x).div(y);  }  /*   * Return a new Decimal whose value is the natural exponential of `x`, rounded to `precision`   * significant digits using rounding mode `rounding`.   *   * x {number|string|Decimal} The power to which to raise the base of the natural log.   *   */  function exp(x) {    return new this(x).exp();  }  /*   * Return a new Decimal whose value is `x` round to an integer using `ROUND_FLOOR`.   *   * x {number|string|Decimal}   *   */  function floor(x) {    return finalise(x = new this(x), x.e + 1, 3);  }  /*   * Return a new Decimal whose value is the square root of the sum of the squares of the arguments,   * rounded to `precision` significant digits using rounding mode `rounding`.   *   * hypot(a, b, ...) = sqrt(a^2 + b^2 + ...)   *   * arguments {number|string|Decimal}   *   */  function hypot() {    var i, n,      t = new this(0);    external = false;    for (i = 0; i < arguments.length;) {      n = new this(arguments[i++]);      if (!n.d) {        if (n.s) {          external = true;          return new this(1 / 0);        }        t = n;      } else if (t.d) {        t = t.plus(n.times(n));      }    }    external = true;    return t.sqrt();  }  /*   * Return true if object is a Decimal instance (where Decimal is any Decimal constructor),   * otherwise return false.   *   */  function isDecimalInstance(obj) {    return obj instanceof Decimal || obj && obj.name === '[object Decimal]' || false;  }  /*   * Return a new Decimal whose value is the natural logarithm of `x`, rounded to `precision`   * significant digits using rounding mode `rounding`.   *   * x {number|string|Decimal}   *   */  function ln(x) {    return new this(x).ln();  }  /*   * Return a new Decimal whose value is the log of `x` to the base `y`, or to base 10 if no base   * is specified, rounded to `precision` significant digits using rounding mode `rounding`.   *   * log[y](x)   *   * x {number|string|Decimal} The argument of the logarithm.   * y {number|string|Decimal} The base of the logarithm.   *   */  function log(x, y) {    return new this(x).log(y);  }  /*   * Return a new Decimal whose value is the base 2 logarithm of `x`, rounded to `precision`   * significant digits using rounding mode `rounding`.   *   * x {number|string|Decimal}   *   */  function log2(x) {    return new this(x).log(2);  }  /*   * Return a new Decimal whose value is the base 10 logarithm of `x`, rounded to `precision`   * significant digits using rounding mode `rounding`.   *   * x {number|string|Decimal}   *   */  function log10(x) {    return new this(x).log(10);  }  /*   * Return a new Decimal whose value is the maximum of the arguments.   *   * arguments {number|string|Decimal}   *   */  function max() {    return maxOrMin(this, arguments, 'lt');  }  /*   * Return a new Decimal whose value is the minimum of the arguments.   *   * arguments {number|string|Decimal}   *   */  function min() {    return maxOrMin(this, arguments, 'gt');  }  /*   * Return a new Decimal whose value is `x` modulo `y`, rounded to `precision` significant digits   * using rounding mode `rounding`.   *   * x {number|string|Decimal}   * y {number|string|Decimal}   *   */  function mod(x, y) {    return new this(x).mod(y);  }  /*   * Return a new Decimal whose value is `x` multiplied by `y`, rounded to `precision` significant   * digits using rounding mode `rounding`.   *   * x {number|string|Decimal}   * y {number|string|Decimal}   *   */  function mul(x, y) {    return new this(x).mul(y);  }  /*   * Return a new Decimal whose value is `x` raised to the power `y`, rounded to precision   * significant digits using rounding mode `rounding`.   *   * x {number|string|Decimal} The base.   * y {number|string|Decimal} The exponent.   *   */  function pow(x, y) {    return new this(x).pow(y);  }  /*   * Returns a new Decimal with a random value equal to or greater than 0 and less than 1, and with   * `sd`, or `Decimal.precision` if `sd` is omitted, significant digits (or less if trailing zeros   * are produced).   *   * [sd] {number} Significant digits. Integer, 0 to MAX_DIGITS inclusive.   *   */  function random(sd) {    var d, e, k, n,      i = 0,      r = new this(1),      rd = [];    if (sd === void 0) sd = this.precision;    else checkInt32(sd, 1, MAX_DIGITS);    k = Math.ceil(sd / LOG_BASE);    if (!this.crypto) {      for (; i < k;) rd[i++] = Math.random() * 1e7 | 0;    // Browsers supporting crypto.getRandomValues.    } else if (crypto.getRandomValues) {      d = crypto.getRandomValues(new Uint32Array(k));      for (; i < k;) {        n = d[i];        // 0 <= n < 4294967296        // Probability n >= 4.29e9, is 4967296 / 4294967296 = 0.00116 (1 in 865).        if (n >= 4.29e9) {          d[i] = crypto.getRandomValues(new Uint32Array(1))[0];        } else {          // 0 <= n <= 4289999999          // 0 <= (n % 1e7) <= 9999999          rd[i++] = n % 1e7;        }      }    // Node.js supporting crypto.randomBytes.    } else if (crypto.randomBytes) {      // buffer      d = crypto.randomBytes(k *= 4);      for (; i < k;) {        // 0 <= n < 2147483648        n = d[i] + (d[i + 1] << 8) + (d[i + 2] << 16) + ((d[i + 3] & 0x7f) << 24);        // Probability n >= 2.14e9, is 7483648 / 2147483648 = 0.0035 (1 in 286).        if (n >= 2.14e9) {          crypto.randomBytes(4).copy(d, i);        } else {          // 0 <= n <= 2139999999          // 0 <= (n % 1e7) <= 9999999          rd.push(n % 1e7);          i += 4;        }      }      i = k / 4;    } else {      throw Error(cryptoUnavailable);    }    k = rd[--i];    sd %= LOG_BASE;    // Convert trailing digits to zeros according to sd.    if (k && sd) {      n = mathpow(10, LOG_BASE - sd);      rd[i] = (k / n | 0) * n;    }    // Remove trailing words which are zero.    for (; rd[i] === 0; i--) rd.pop();    // Zero?    if (i < 0) {      e = 0;      rd = [0];    } else {      e = -1;      // Remove leading words which are zero and adjust exponent accordingly.      for (; rd[0] === 0; e -= LOG_BASE) rd.shift();      // Count the digits of the first word of rd to determine leading zeros.      for (k = 1, n = rd[0]; n >= 10; n /= 10) k++;      // Adjust the exponent for leading zeros of the first word of rd.      if (k < LOG_BASE) e -= LOG_BASE - k;    }    r.e = e;    r.d = rd;    return r;  }  /*   * Return a new Decimal whose value is `x` rounded to an integer using rounding mode `rounding`.   *   * To emulate `Math.round`, set rounding to 7 (ROUND_HALF_CEIL).   *   * x {number|string|Decimal}   *   */  function round(x) {    return finalise(x = new this(x), x.e + 1, this.rounding);  }  /*   * Return   *   1    if x > 0,   *  -1    if x < 0,   *   0    if x is 0,   *  -0    if x is -0,   *   NaN  otherwise   *   * x {number|string|Decimal}   *   */  function sign(x) {    x = new this(x);    return x.d ? (x.d[0] ? x.s : 0 * x.s) : x.s || NaN;  }  /*   * Return a new Decimal whose value is the sine of `x`, rounded to `precision` significant digits   * using rounding mode `rounding`.   *   * x {number|string|Decimal} A value in radians.   *   */  function sin(x) {    return new this(x).sin();  }  /*   * Return a new Decimal whose value is the hyperbolic sine of `x`, rounded to `precision`   * significant digits using rounding mode `rounding`.   *   * x {number|string|Decimal} A value in radians.   *   */  function sinh(x) {    return new this(x).sinh();  }  /*   * Return a new Decimal whose value is the square root of `x`, rounded to `precision` significant   * digits using rounding mode `rounding`.   *   * x {number|string|Decimal}   *   */  function sqrt(x) {    return new this(x).sqrt();  }  /*   * Return a new Decimal whose value is `x` minus `y`, rounded to `precision` significant digits   * using rounding mode `rounding`.   *   * x {number|string|Decimal}   * y {number|string|Decimal}   *   */  function sub(x, y) {    return new this(x).sub(y);  }  /*   * Return a new Decimal whose value is the tangent of `x`, rounded to `precision` significant   * digits using rounding mode `rounding`.   *   * x {number|string|Decimal} A value in radians.   *   */  function tan(x) {    return new this(x).tan();  }  /*   * Return a new Decimal whose value is the hyperbolic tangent of `x`, rounded to `precision`   * significant digits using rounding mode `rounding`.   *   * x {number|string|Decimal} A value in radians.   *   */  function tanh(x) {    return new this(x).tanh();  }  /*   * Return a new Decimal whose value is `x` truncated to an integer.   *   * x {number|string|Decimal}   *   */  function trunc(x) {    return finalise(x = new this(x), x.e + 1, 1);  }  // Create and configure initial Decimal constructor.  Decimal = clone(DEFAULTS);  Decimal['default'] = Decimal.Decimal = Decimal;  // Create the internal constants from their string values.  LN10 = new Decimal(LN10);  PI = new Decimal(PI);  // Export.  // AMD.  if (typeof define == 'function' && define.amd) {    define(function () {      return Decimal;    });  // Node and other environments that support module.exports.  } else if (typeof module != 'undefined' && module.exports) {    if (typeof Symbol == 'function' && typeof Symbol.iterator == 'symbol') {      P[Symbol.for('nodejs.util.inspect.custom')] = P.toString;      P[Symbol.toStringTag] = 'Decimal';    }    module.exports = Decimal;  // Browser.  } else {    if (!globalScope) {      globalScope = typeof self != 'undefined' && self && self.self == self ? self : window;    }    noConflict = globalScope.Decimal;    Decimal.noConflict = function () {      globalScope.Decimal = noConflict;      return Decimal;    };    globalScope.Decimal = Decimal;  }})(this);
 |